Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2/3-1/3x+1/2-x-1/2=5
=>-4/3x+2/3=5
=>-4/3x=13/3
=>x=-13/4
b: \(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x-\dfrac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)
c: =>1/3x+3/5x+3/5=0
=>14/15x=-3/5
=>x=-3/5:14/15=-3/5x15/14=-45/70=-9/14
d: =>x>8/2
e: =>x:1/45=1/2
=>x=1/90
g: =>1/2:x=-2/15
=>x=-1/2:2/15=-15/4
Bài 1:
a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)
\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)
\(\Rightarrow16x-5=x-2\)
\(\Rightarrow16x-x=5-2\)
\(\Rightarrow15x=3\)
\(\Rightarrow x=\dfrac{15}{3}=5\)
b) \(12x^2-4x\left(3x+5\right)=10x-17\)
\(\Rightarrow12x^2-12x^2-20x=10x-17\)
\(\Rightarrow-20x=10x-17\)
\(\Rightarrow-20x-10x=-17\)
\(\Rightarrow-30x=-17\)
\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)
c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)
\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)
\(\Rightarrow-8x=12\)
\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)
Bài 2:
a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)
\(=x^2-7x+5x-35-7x^2+21x\)
\(=-6x^2+19x-35\)
b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)
\(=x^3-x^2-2x-x^2+x-5x-5\)
\(=x^3-2x^2-6x-5\)
c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)
\(=x^2-7x-5x+35-x^2-3x+4x-12\)
\(=11x+23\)
d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)
\(=x^2-2x-x+2-x^2+2x+5x+10\)
\(=4x+12\)
1. So sánh
a) \(25^{50}\) và \(2^{300}\)
\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)
\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25< 64\) nên \(25^{50}< 64^{50}\)
Vậy \(25^{50}< 2^{300}\)
b) \(625^{15}\) và \(12^{45}\)
\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)
\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625< 1728\) nên \(625^{15}< 1728^{15}\)
Vậy \(625^{15}< 12^{45}\)
1.So sánh
a)\(25^{50}\) và \(2^{300}\)
Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)
b)\(625^{15}\) và \(12^{45}\)
Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)
a) \(\dfrac{2}{3}\left(x+1\right)-\dfrac{4}{5}\left(x+2\right)=\dfrac{35}{2}\)
\(\Rightarrow\dfrac{2}{3}x+\dfrac{2}{3}-\dfrac{4}{5}x-\dfrac{8}{5}=\dfrac{35}{2}\)
\(\Rightarrow\left(\dfrac{2}{3}-\dfrac{4}{5}\right)x+\left(\dfrac{2}{3}-\dfrac{8}{5}\right)=\dfrac{35}{2}\)
\(\Rightarrow-\dfrac{2}{15}x-\dfrac{14}{15}=\dfrac{35}{2}\)
\(\Rightarrow-\dfrac{2}{15}x=\dfrac{553}{30}\)
\(\Rightarrow x=\dfrac{553}{30}:-\dfrac{2}{15}\)
\(\Rightarrow x=-\dfrac{553}{4}\)
b) \(4\left(x-2\right)+5\left(x+1\right)=-15\)
\(\Rightarrow4x-8+5x+5=-15\)
\(\Rightarrow\left(4+5\right)x+\left(-8+5\right)=-15\)
\(\Rightarrow9x-3=-15\)
\(\Rightarrow9x=-15+3\)
\(\Rightarrow x=\dfrac{-12}{9}\)
\(\Rightarrow x=-\dfrac{4}{3}\)
c) \(\dfrac{3}{2}:x+\left(-\dfrac{5}{2}\right)=-\dfrac{7}{3}\)
\(\Rightarrow\dfrac{3}{2}:x=-\dfrac{7}{3}+\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{1}{6}:\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{1}{9}\)
a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)
b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)
a) \(-\dfrac{11}{20}\)
b) \(x=-\dfrac{13}{3}\)
c) \(x=\dfrac{22}{7}\)
d) \(x=-\dfrac{52}{3}\)
c: \(\dfrac{3}{7}-\dfrac{2}{3}x=\dfrac{-5}{3}\)
\(\Leftrightarrow x\cdot\dfrac{2}{3}=\dfrac{3}{7}+\dfrac{5}{3}=\dfrac{44}{21}\)
\(\Leftrightarrow x=\dfrac{44}{21}:\dfrac{2}{3}=\dfrac{44}{21}\cdot\dfrac{3}{2}=22\cdot\dfrac{1}{7}=\dfrac{22}{7}\)