\(b=3^{2009}.7^{2010}.13^{2011}\)

Tìm chữ số hàng đơn vị của \...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

\(b=\left(3.3^{2008}\right).\left(7^{2010}.13^{2010}\right).13\)

\(=\left(3.13\right).\left(3^4\right)^{502}.\left(7.13\right)^{2010}\)

\(=39.81^{502}.91^{2010}\)

Ta có: \(81^{502}\)\(91^{2010}\) đề có chữ số tận cùng là 1

Vậy số b có chữ số hàng đơn vị là 9

17 tháng 7 2017

Ta có:\(3^4\)=\(\overline{...1}\)

\(\Leftrightarrow\)(\(3^4\))\(^{502}\)=\(\overline{...1}\)

\(\Leftrightarrow\)(\(3^4\))\(^{502}\).3=\(\overline{...3}\)

\(\Leftrightarrow\)\(3^{2009}\)=\(\overline{...3}\)(1)

\(7^8\)=\(\overline{...1}\)

\(\Leftrightarrow\)(\(7^8\))\(^{251}\)=\(\overline{...1}\)

\(\Leftrightarrow\)\(7^{2008}.7^2\)=\(\overline{...9}\)

\(\Leftrightarrow\)\(7^{2010}\)=\(\overline{...9}\)(2)

Và 13\(^4\)=\(\overline{...1}\)

\(\Leftrightarrow\)(13\(^4\))\(^{502}\)=\(\overline{...1}\)

\(\Leftrightarrow\)(13\(^4\))\(^{502}\).13\(^3\)=\(\overline{...7}\)(3)

Từ (1)(2)(3)\(\Rightarrow\)b=\(3^{2009}\).\(7^{2010}\).13\(^{2011}\)=\(\overline{...3}\).\(\overline{...7}\).\(\overline{...9}\)=\(\overline{...9}\)

Vậy chữ số hàng đơn vị của b là 9.

28 tháng 9 2015

câu hỏi tương tự có

đúng thì tick nha

31 tháng 8 2020

Mình đang cần đáp án gấp.Các bạn giúp mình nha

31 tháng 8 2020

Ta có 32009 = 32008.3 = (34)502.3 = (...1)502.3 = (...1).3 = (...3)

Lại có 72010 = 72008.72 = (74)502.49 = (...1)502.49 = (...1).49 = (...9)

Lại có 132011 = 132008.133 = (134)502 . (...7) = (...1)502.(..7) = (...1)(...7) = (..7)

Khi đó B = (...3).(...9).(...7) = (...7).(...7) = ( ...9)

Vậy chữ số tận cùng của B hay chữ số hàng đơn vi của B là 9

23 tháng 9 2016

Ta có : \(3^4=...1\Rightarrow\left(3^4\right)^{502}=3^{2008}=....1\Rightarrow3^{2008}.3=3^{2009}=...3\)

\(7^4=...1\Rightarrow7^{2008}=...1\Rightarrow7^{2008}.49=7^{2010}=...9\)

\(13^4=...1\Rightarrow13^{2008}=...1\Rightarrow13^{2008}.2197=13^{2011}=...7\)

\(\Rightarrow b=...3\times....9\times....7=...9\)

17 tháng 10 2018

Ta có:

 \(\frac{a}{5}=\frac{b}{-4}=\frac{a-b}{5-\left(-4\right)}=\frac{a-2b}{5-2\left(-4\right)}\)

Mà a - 2b = 26

\(\Rightarrow\frac{a-b}{5-2\left(-4\right)}=\frac{26}{13}=2\)

\(\Rightarrow\frac{a}{5}=2\)

\(a=2.5=10\)

\(\Rightarrow\frac{b}{-4}=2\)

\(b=2.\left(-4\right)=-8\)

Vậy a = 10

       b = -8

17 tháng 10 2018

Có : \(\frac{b}{-4}=\frac{2b}{-8}\)

Do \(\frac{a}{5}=\frac{b}{-4}\Rightarrow\frac{a}{5}=\frac{2b}{-8}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{a}{5}=\frac{2b}{-8}=\frac{a-2b}{5-\left(-8\right)}=\frac{26}{13}=2\)

\(\Rightarrow\hept{\begin{cases}a=5\cdot2=10\\2b=-8\cdot2=-16\Rightarrow b=\frac{-16}{2}=-8\end{cases}}\)

31 tháng 8 2016

Ta có : \(3^{2009}=3^{2008}.3=\left(3^4\right)^{502}.3=81^{502}.3\)

Vì \(81^{502}\) có tận cùng là 1

=> \(81^{502}.3\) có tận cùng là 3

=> \(3^{2009}\) có tận cùng là 3

Ta có : \(7^{2010}=\left(7^3\right)^{670}=21^{670}\)

Vì \(21^{670}\) có tận cùng là 1

=> \(7^{2010}\) có tận cùng là 1

Ta có : \(13^{2011}=13^{2008}.13^3=\left(13^4\right)^{502}.13^3=28561^{502}.2197\)

Vì \(28561^{502}\) có tận cùng là 1

=> \(28561^{502}.2197\) có tận cùng là 7

=> \(13^{2011}\) có tận cùng là 7

Vì \(3^{2009}\) có tận cùng là 3

     \(7^{2010}\) có tận cùng là 1

      \(13^{2011}\) có tận cùng là 7

=> \(3^{2009}.7^{2010}.13^{2011}\) có tận cùng là 1

31 tháng 8 2016

Ta có : \(3^{2009}=3^{2008}.3=\left(3^4\right)^{502}.3=81^{502}.3\)

Vì \(81^{502}\) có tận cùng là 1

=> \(81^{502}.3\) có tận cùng là 3

=> \(3^{2009}\) có tận cùng là 3

Ta có : \(7^{2010}=7^{2008}.7^2=\left(7^4\right)^{502}.7^2=2401^{502}.49\)

Vì \(2401^{502}\) có tận cùng là 1

=> \(2401^{502}.49\) có tận cùng là 9

=> \(7^{2010}\) có tận cùng là 9

Ta có : \(13^{2011}=13^{2008}.13^3=\left(13^4\right)^{502}.13^3=28561^{502}.2197\)

Vì \(28561^{502}\) có tận cùng là 1

=> \(28561^{502}.2197\) có tận cùng là 7

=> \(13^{2011}\) có tận cùng là 7

Vì \(3^{2009}\) có tận cùng là 3

     \(7^{2010}\) có tận cùng là 9

      \(13^{2011}\) có tận cùng là 7

=> \(3^{2009}.7^{2010}.13^{2011}\) có tận cùng là 9

22 tháng 7 2016

\(B=\left(3^4\right)^{502}.3.\left(7^4\right)^{502}.7^2.\left(13^4\right)^{502}.13^3\)

\(B=\overline{\left(...........1\right)}\overline{\left(..........1\right)\left(...........1\right)}.3.49.2197=\left(\overline{...............9}\right)\)

Vậy B có tận cùng là 9

22 tháng 7 2016

- Giải khác SBT nhé! :D