Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b=\left(3.3^{2008}\right).\left(7^{2010}.13^{2010}\right).13\)
\(=\left(3.13\right).\left(3^4\right)^{502}.\left(7.13\right)^{2010}\)
\(=39.81^{502}.91^{2010}\)
Ta có: \(81^{502}\) và \(91^{2010}\) đề có chữ số tận cùng là 1
Vậy số b có chữ số hàng đơn vị là 9
Ta có:\(3^4\)=\(\overline{...1}\)
\(\Leftrightarrow\)(\(3^4\))\(^{502}\)=\(\overline{...1}\)
\(\Leftrightarrow\)(\(3^4\))\(^{502}\).3=\(\overline{...3}\)
\(\Leftrightarrow\)\(3^{2009}\)=\(\overline{...3}\)(1)
Và \(7^8\)=\(\overline{...1}\)
\(\Leftrightarrow\)(\(7^8\))\(^{251}\)=\(\overline{...1}\)
\(\Leftrightarrow\)\(7^{2008}.7^2\)=\(\overline{...9}\)
\(\Leftrightarrow\)\(7^{2010}\)=\(\overline{...9}\)(2)
Và 13\(^4\)=\(\overline{...1}\)
\(\Leftrightarrow\)(13\(^4\))\(^{502}\)=\(\overline{...1}\)
\(\Leftrightarrow\)(13\(^4\))\(^{502}\).13\(^3\)=\(\overline{...7}\)(3)
Từ (1)(2)(3)\(\Rightarrow\)b=\(3^{2009}\).\(7^{2010}\).13\(^{2011}\)=\(\overline{...3}\).\(\overline{...7}\).\(\overline{...9}\)=\(\overline{...9}\)
Vậy chữ số hàng đơn vị của b là 9.
Ta có 32009 = 32008.3 = (34)502.3 = (...1)502.3 = (...1).3 = (...3)
Lại có 72010 = 72008.72 = (74)502.49 = (...1)502.49 = (...1).49 = (...9)
Lại có 132011 = 132008.133 = (134)502 . (...7) = (...1)502.(..7) = (...1)(...7) = (..7)
Khi đó B = (...3).(...9).(...7) = (...7).(...7) = ( ...9)
Vậy chữ số tận cùng của B hay chữ số hàng đơn vi của B là 9
Ta có : \(3^4=...1\Rightarrow\left(3^4\right)^{502}=3^{2008}=....1\Rightarrow3^{2008}.3=3^{2009}=...3\)
\(7^4=...1\Rightarrow7^{2008}=...1\Rightarrow7^{2008}.49=7^{2010}=...9\)
\(13^4=...1\Rightarrow13^{2008}=...1\Rightarrow13^{2008}.2197=13^{2011}=...7\)
\(\Rightarrow b=...3\times....9\times....7=...9\)
Ta có:
\(\frac{a}{5}=\frac{b}{-4}=\frac{a-b}{5-\left(-4\right)}=\frac{a-2b}{5-2\left(-4\right)}\)
Mà a - 2b = 26
\(\Rightarrow\frac{a-b}{5-2\left(-4\right)}=\frac{26}{13}=2\)
\(\Rightarrow\frac{a}{5}=2\)
\(a=2.5=10\)
\(\Rightarrow\frac{b}{-4}=2\)
\(b=2.\left(-4\right)=-8\)
Vậy a = 10
b = -8
Có : \(\frac{b}{-4}=\frac{2b}{-8}\)
Do \(\frac{a}{5}=\frac{b}{-4}\Rightarrow\frac{a}{5}=\frac{2b}{-8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{5}=\frac{2b}{-8}=\frac{a-2b}{5-\left(-8\right)}=\frac{26}{13}=2\)
\(\Rightarrow\hept{\begin{cases}a=5\cdot2=10\\2b=-8\cdot2=-16\Rightarrow b=\frac{-16}{2}=-8\end{cases}}\)
Ta có : \(3^{2009}=3^{2008}.3=\left(3^4\right)^{502}.3=81^{502}.3\)
Vì \(81^{502}\) có tận cùng là 1
=> \(81^{502}.3\) có tận cùng là 3
=> \(3^{2009}\) có tận cùng là 3
Ta có : \(7^{2010}=\left(7^3\right)^{670}=21^{670}\)
Vì \(21^{670}\) có tận cùng là 1
=> \(7^{2010}\) có tận cùng là 1
Ta có : \(13^{2011}=13^{2008}.13^3=\left(13^4\right)^{502}.13^3=28561^{502}.2197\)
Vì \(28561^{502}\) có tận cùng là 1
=> \(28561^{502}.2197\) có tận cùng là 7
=> \(13^{2011}\) có tận cùng là 7
Vì \(3^{2009}\) có tận cùng là 3
\(7^{2010}\) có tận cùng là 1
\(13^{2011}\) có tận cùng là 7
=> \(3^{2009}.7^{2010}.13^{2011}\) có tận cùng là 1
Ta có : \(3^{2009}=3^{2008}.3=\left(3^4\right)^{502}.3=81^{502}.3\)
Vì \(81^{502}\) có tận cùng là 1
=> \(81^{502}.3\) có tận cùng là 3
=> \(3^{2009}\) có tận cùng là 3
Ta có : \(7^{2010}=7^{2008}.7^2=\left(7^4\right)^{502}.7^2=2401^{502}.49\)
Vì \(2401^{502}\) có tận cùng là 1
=> \(2401^{502}.49\) có tận cùng là 9
=> \(7^{2010}\) có tận cùng là 9
Ta có : \(13^{2011}=13^{2008}.13^3=\left(13^4\right)^{502}.13^3=28561^{502}.2197\)
Vì \(28561^{502}\) có tận cùng là 1
=> \(28561^{502}.2197\) có tận cùng là 7
=> \(13^{2011}\) có tận cùng là 7
Vì \(3^{2009}\) có tận cùng là 3
\(7^{2010}\) có tận cùng là 9
\(13^{2011}\) có tận cùng là 7
=> \(3^{2009}.7^{2010}.13^{2011}\) có tận cùng là 9
\(B=\left(3^4\right)^{502}.3.\left(7^4\right)^{502}.7^2.\left(13^4\right)^{502}.13^3\)
\(B=\overline{\left(...........1\right)}\overline{\left(..........1\right)\left(...........1\right)}.3.49.2197=\left(\overline{...............9}\right)\)
Vậy B có tận cùng là 9