Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(cos35=\dfrac{8^2+8^2-BC^2}{2\cdot8\cdot8}\)
=>\(128-BC^2=2\cdot64\cdot cos35=128\cdot cos35\)
=>\(BC=\sqrt{128-128\cdot cos35}\simeq4,81\left(cm\right)\)
Xét ΔADC có \(\dfrac{CD}{sinCAD}=\dfrac{AC}{sinADC}\)
=>\(\dfrac{8}{sinADC}=\dfrac{6}{sin43}\)
=>\(sinADC=8\cdot\dfrac{sin43}{6}\simeq0,91\)
=>\(\widehat{ADC}\simeq65^0\)
a:
ΔABC cân tại A
=>góc ABC=góc ACB=(180-34)/2=146/2=73 độ
Xét ΔABC có BC/sinA=AB/sinC=AC/sinB=2R
=>BC/sin34=8/sin73
=>\(BC\simeq4,68\left(cm\right)\)
b: Xét ΔADC có \(cosCAD=\dfrac{AC^2+AD^2-CD^2}{2\cdot AC\cdot AD}\)
=>\(8^2+10.6^2-CD^2=2\cdot8\cdot10.6\cdot cos42\)
=>\(CD\simeq7,09\left(cm\right)\)
Xét ΔACD có
\(\dfrac{AC}{sinADC}=\dfrac{CD}{sinCAD}\)
=>8/sinADC=7,09/sin42
=>\(sinADC\simeq0,76\)
=>\(\widehat{ADC}\simeq49^0\)
c:
góc DAB=góc DAC+góc BAC
=42+34
=76 độ
Kẻ BH vuông góc AD
=>BH=d(B;AD)
Xét ΔBHA vuông tại H có
sinHAB=BH/BA
=>BH/8=sin76
=>\(BH\simeq7,76\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ABC
\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:
\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)
\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)
b.
Ta có: \(EC=AC-AE=3,6\left(cm\right)\)
Do AB song song CF, theo định lý Talet:
\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)
\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADF:
\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)
Pitago tam giác vuông BCF:
\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)
Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)
\(\Rightarrow FH=AD=6\left(cm\right)\)
\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
Hình vẽ đâu em?
K có hình ạ