K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔACB cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)

nên \(\widehat{ABC}=\widehat{FCN}\)

Xét ΔEBM vuông tại M và ΔFCN vuông tại N có

BM=CN

\(\widehat{EBM}=\widehat{FCN}\)

Do đó: ΔEBM=ΔFCN

=>EM=FN

b: ED//AC

=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EDB}=\widehat{ABC}\)

=>\(\widehat{EBD}=\widehat{EDB}\)

=>ΔEBD cân tại E

ΔEBD cân tại E

mà EM là đường cao

nên M là trung điểm của BD

=>MB=MD

c: EM\(\perp\)BC

FN\(\perp\)BC

Do đó: EM//FN

Xét ΔOME vuông tại M và ΔONF vuông tại N có

ME=NF

\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)

Do đó: ΔOME=ΔONF

=>OE=OF

tham khảo

kẻ thêm MK⊥BC⊥BC

ta có ΔABM=ΔKBM(ch.cgn)ΔABM=ΔKBM(ch.cgn)

lí do vì góc B1=góc B2(do BM phân giác), 

góc BKM=góc BAM=90oo, cạnh BM chung

từ đó=>AM=MK(các cạnh t ứng)(1)

chứng minh ΔMND=ΔMAB(ch.cgn)ΔMND=ΔMAB(ch.cgn)

do góc M1=M2(đối đỉnh), MB=MD(gt), góc DNM=góc BAM(=90 độ)

=>AM=MN(2) từ(1)(2)=>MN=MK

trong tam giác MKC vuông tại K thì cạnh huyền MC lớn nhất

=>MC>MK<=>MC>MN(dpcm)

14 tháng 8 2021
Ai giúp vứi
8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh