K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2022

\(B=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}.\dfrac{2010}{2011}=\dfrac{2010}{6033}\)

Lại có : \(1=\dfrac{6033}{6033}\Rightarrow B< 1\)

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{2008.2011}\)

\(=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2008}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{3}.\dfrac{2010}{2011}\)

\(=\dfrac{2010}{6033}=\dfrac{670}{2011}\)

Vì phân số \(\dfrac{670}{2011}\) có tử số nhỏ hơn mẫu số ⇒ \(\dfrac{670}{2011}< 1\) hay \(B< 1\)

1 tháng 5 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2008.2011}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2008}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}\)

\(=\frac{2011}{2011}-\frac{1}{2011}\)

\(=\frac{2010}{2011}\)

Chúc bạn học tốt !!!! 

1 tháng 5 2018

Đặt: A= \(\frac{3}{1\times4}\)\(\frac{3}{4\times7}\)\(\frac{3}{7\times10}\)+...+ \(\frac{3}{2005\times2008}\)\(\frac{3}{2008\times2011}\).

A= \(\frac{3}{1}\)\(\frac{3}{4}\)\(\frac{3}{4}\)\(\frac{3}{7}\)\(\frac{3}{7}\)\(\frac{3}{10}\)+...+ \(\frac{3}{2005}\)\(\frac{3}{2008}\)\(\frac{3}{2008}\)\(\frac{3}{2011}\).

A= 3- \(\frac{3}{2011}\).

A= \(\frac{6033}{2011}\)\(\frac{3}{2011}\).

A= \(\frac{6030}{2011}\).

Vậy A= \(\frac{6030}{2011}\).

28 tháng 7 2017

S=\(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{43.46}\)

S<\(\dfrac{1}{1}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+...+\(\dfrac{1}{43}\)-\(\dfrac{1}{46}\)

S< \(\dfrac{1}{1}\)-\(\dfrac{1}{46}\)

S<\(\dfrac{45}{46}\)<1

Vậy S< 1

Chúc bạn học tốt , tick cho mk nhéhihi

28 tháng 7 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{34.46}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}\)

\(S=\dfrac{45}{46}< 1\)

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{34.46}< 1\)

\(\Rightarrow S< 1\) (đpcm)

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

7 tháng 4 2015

3/1.4+3/4.7+3/7.10+...+3/(n+1).n

=1-1/4+1/4-1/7+1/7-1/10+...+1/(n+1)-1/n

=1-1/n

Vì 1=1 nên 1-1/n <1

Vậy 3/1.4+3/4.7+3/7.10+...+3/(n+1)n<1

thảo nào, cái chỗ bạn sửa lại thấy sao sao ý, giờ thì đúng rồi

24 tháng 4 2017

1/1*4+1/4*7+1/7*10+...+1/2010*2013=A

3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013

3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013

3A=1-1/2013<1

Suy ra : A <1/3

Nho k cho minh voi nhe

25 tháng 4 2017

Thank bạn nhìu nha ^-^ Chúc bạn học tốt

29 tháng 3 2016

= 1 - 1/4 +1/4 -1/7 + 1/7 -1/10+....+ 1/n-1/n+3

= 1- 1/n+3 (<1)

11 tháng 6 2015

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=1-\frac{1}{46}

18 tháng 3 2016

Do : \(\frac{3}{1.4}=\frac{1}{1}-\frac{1}{4};\frac{3}{4.7}=\frac{1}{4}-\frac{1}{7}\).... tuong tu ... \(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)

S= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n-3}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+3}\)

S= \(1-\frac{1}{n+3}\)<1

=> S<1 (dpcm)

18 tháng 3 2016

(do : 3/ 1.4 = 1/1 - 1/4;  3/4.7= 1/4 - 1/7 ...

S= 1- 1/4 + 1/4 + 1/4 - 1/7 + ... + 1/ n - 1/ (n+3)

S= 1- 1/ (n+3) <1 

=> S <1 (dpcm)