K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)

Lại có: SH2 = SC2 - HC2 (Pytago)

b) Gọi K là trung điểm của BC

Ta có: SK2 = SH2 + HK2 (Pytago)

10 tháng 10 2023

Gọi M là trung điểm của AB: 

\(\Rightarrow MA=MB=\dfrac{AB}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Do SM là ⊥ AB nên ΔSAM vuông tại M áp dụng định lý Py-ta-go ta có:

\(SA^2=SM^2+MA^2\)

\(\Rightarrow13^2=SM^2+5^2\)

\(\Rightarrow SM=\sqrt{13^2-5^2}=12\left(cm\right)\)

Nữa chu vi đáy của hình chóp tứ giác đều:

\(p=\dfrac{4\cdot10}{2}=20\left(cm\right)\)

Diện tích xung quanh của chóp tứ giác đều là:

\(S_{xq}=p\cdot d=20\cdot12=240\left(cm^2\right)\)

Ảnh tham khảo:

10 tháng 10 2023

Gọi x (cm) là đường cao của mặt bên:

Ta có:

x² = 13² - 5² = 144

x = 12 (cm)

Diện tích xung quanh của hình chóp:

4 . 12 . 10 : 2 = 240 (cm²)

 

26 tháng 10 2023

Diện tích xung quanh hình chóp là:

$\dfrac12\cdot(4\cdot10)\cdot13=260(cm^2)$

Vậy diện tích xung quanh hình chóp là $260$ cm2.

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

Lời giải:

Xét tam giác $SAB$ có $SA=SB=10$, $AB=12$

Kẻ $SH\perp AB$ thì $H$ là trung điểm của $AB$.

$\Rightarrow AH=6$ (cm)

Theo định lý Pitago:

$SH=\sqrt{SA^2-AH^2}=\sqrt{10^2-6^2}=8$ (cm)

$S_{SAB}=\frac{SH.AB}{2}=\frac{8.12}{2}=48$ (cm vuông)

$S_{xq}=3S_{SAB}=3.48=144$ (cm vuông)

19 tháng 5 2018

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

23 tháng 9 2019

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

 

8 tháng 11 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

11 tháng 1 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

+ BD = AC = √ (82 + 82) = 8√ 2 ( cm ) ⇒ AO = BO = CO = DO = 4√ 2 ( cm )

Do đó:

+ Diện tích xung quanh của hình chóp đều là Sxq = p.d = p.OB = 16.4√ 2 = 64√ 2 ( cm2 ).

+ Diện tích toàn phần của hình chóp đều là

Stp = Sxq + SABCD = 64√ 2 + 82 = 64 + 64√ 2 ( cm2 )

+ Thể tích của hình chóp đều là V = 1/3S.h = 1/3.SABCD.SO = 1/3.82.10 = 640/3( cm3 )

13 tháng 1 2018

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án