K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

\(\frac{x^5y}{xy^4}=\frac{x^4}{y^3}\)

\(\frac{3\times x^2\times y^5}{9\times x\times y^4}=\frac{xy}{3}\)

30 tháng 6 2019

\(\Leftrightarrow\frac{4x^2}{5}\times\frac{2x-3}{6}-\frac{3x-10}{15}\times\frac{4x^2+3}{3}=\frac{22x^2}{45}\)

\(\Leftrightarrow\frac{4x^2\left(2x-3\right)}{30}-\frac{\left(3x-10\right)\left(4x^2+3\right)}{45}=\frac{22x^2}{45}\)

\(\Leftrightarrow\frac{12x^2\left(2x-3\right)}{90}-\frac{2\left(3x-10\right)\left(4x^2+3\right)}{90}=\frac{44x^2}{90}\)

\(\Leftrightarrow12x^2\left(2x-3\right)-2\left(3x-10\right)\left(4x^2+3\right)=44x^2\)

\(\Leftrightarrow24x^2-36x^2-2\left(12x^3+9x-40x^2-30\right)=44x^2\)

\(\Leftrightarrow24x^2-36x^2-24x^3-18x+80x^2+60=44x^2\)

\(\Leftrightarrow24x^3-36x^2-24x^3-18x+80x^2-44x^2=-60\)

\(\Leftrightarrow\left(24x^3-24x^3\right)+\left(-36x^2+80x^2-44x^2\right)-18x=-60\)

\(\Leftrightarrow-18x=-60\)

\(\Leftrightarrow x=\frac{-60}{-18}\)

\(\Leftrightarrow x=\frac{10}{3}\)

27 tháng 6 2017

a)\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}.\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\left(ĐKXĐ:x\ne0;-1\right)\)

\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{x+1}{x}\right)+\frac{1}{\left(x+1\right)^2}.\left(\frac{x^2+1}{x^2}\right)\right]:\frac{x-1}{x^3}\)

\(P=\left[\frac{2}{\left(x+1\right)^2x}+\frac{x^2+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{x^3}\)

\(P=\left[\frac{x^2+2x+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{3}\)

\(P=\frac{\left(x+1\right)^2}{x^2\left(x+1\right)^2}:\frac{x-1}{3}\)

\(P=\frac{3}{x^2\left(x-1\right)}\)

b)Bài này liên quan đến dấu lớn nên mk ko làm đc

29 tháng 1 2017

P.An hở

24 tháng 6 2017

Thiếu điều kiện xy = 1; x+y khác 0 nhá bn

Bài này tương tự câu 1 ở đây

8 tháng 4 2018

Ta có: \(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{\left(x-1\right)\left(y-1\right)}{xy}\left(1+\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}\right)\)

\(=\frac{xy}{xy}\left(1+\frac{1}{xy}+\frac{1}{xy}\right)\)

\(=1+\frac{2}{xy}\)

Lại có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P=1+\frac{2}{xy}\ge1+8=9\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)