K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

\(A=\frac{1}{5}-\left(x-\frac{1}{2}\right)^2\)

\(\Rightarrow A\le\frac{1}{5}\)

Dấu ''='' xảy ra khi và chỉ khi : \(\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy Max A = \(\frac{1}{5}\Leftrightarrow x=\frac{1}{2}\)

\(B=0,75-\left(x-\frac{5}{2}\right)^2\)

\(\Rightarrow B\le0,75\)

Dấu ''='' xảy ra khi và chỉ khi: \(\left(x-\frac{5}{2}\right)^2=0\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy Max A =0,75 \(\Leftrightarrow x=\frac{5}{2}\)

Xin lỗi nhưng minh chỉ làm được hai câu thôi . Chúc bạn học tốt.

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

8 tháng 1 2019

Khó thế!!!

8 tháng 1 2019

\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)

Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)

Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)

\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)

\(=\left|4-2x\right|+y^2-5\)

Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)

\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )

28 tháng 3 2016

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

Bài:1 chứng minh các phân số sau tối giản với nthuoojc z1,     3n-2/4n-3   2,     4n+1/6n+1   Bài:2 cho a;b thuộc z chứng minh a,  6a+11b :a+7b:31         b,    5a+2b:179a+7b:17Bài 3 tìm số x,y biết1,  3/x+y/x+5/6      2,   5/x-y/3=1/6Bài 4 a, tìm x nguyên để các biểu thức đạt giá trị nhỏ nhất1,  A=(x+1)^2+2019         2, B+ giá trị thuyệt đối (2x+6)-2001b, Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất1,...
Đọc tiếp

Bài:1 chứng minh các phân số sau tối giản với nthuoojc z

1,     3n-2/4n-3   2,     4n+1/6n+1   

Bài:2 cho a;b thuộc z chứng minh a,  6a+11b :a+7b:31         b,    5a+2b:179a+7b:17

Bài 3 tìm số x,y biết

1,  3/x+y/x+5/6      2,   5/x-y/3=1/6

Bài 4 a, tìm x nguyên để các biểu thức đạt giá trị nhỏ nhất

1,  A=(x+1)^2+2019         2, B+ giá trị thuyệt đối (2x+6)-2001

b, Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất

1, A=2020-(x+3)^2020     2, B=2019-gíá trị tuyệt đối (2018-x)       3, C=2/(x-3)^2+5       4, D=3/ gía trị thuyệt đối  (x+2)+1

c, tìm giá trị nhỏ nhất của S=giá trị tuyệt đối (x+2)+giá trị tuyệt đối(2y-10)+2019

 

Các Bạn giúp mình mấy bài này nhé mình cảm ơn nhiều làm hết cho mình thì tốt quá mình cảm ơn^^

 

0
8 tháng 12 2020

cho hàm số f(x) thỏa mãn 2f(x) - x. f(-x) = x+10. tính f(2)

8 tháng 1 2019

a,A=|x-7|+12

  Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)

  Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7

  Vậy GTNN của A là 12 khi x = 7

b,B=|x+12|+|y-1|+4

   Vì \(\left|x+12\right|\ge0\forall x\)

        \(\left|y-1\right|\ge0\forall y\)

   nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)

      \(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)

Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)

Vậy GTNN của B là 4 khi x = -12 và y = 1

8 tháng 1 2019

cậu có thể làm những ý khác ko

23 tháng 7 2020

\(B=\frac{1}{2\left(x-1\right)^2}+3\)[ĐKXĐ:2(x-1)^2>0]

Để B đạt GTLN thì 2(x-1)^2 đạt GTNN 

\(Tacó:2\left(x-1\right)^2\ge0\)do đk nên \(2\left(x-1\right)^2\ge1\)

Đẳng thức xảy ra :\(< =>\left(x-1\right)^2=\frac{1}{2}< =>x^2-x+\frac{1}{2}=0\)

Do PT trên vô nghiệm nên B không thể có GTLN

23 tháng 7 2020

này bạn hiểu lộn rồi

2 { x - 1 } 2 + 3 là mẫu số