Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: TH1: m=-2
=>-2(-2-1)x+4<0
=>6x+4<0
=>x<-4/6(loại)
TH2: m<>-2
\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)
=4m^2-8m+4-16m-32
=4m^2-24m-28
Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)
b: TH1: m=3
=>5x-4>0
=>x>4/5(loại)
TH2: m<>3
Δ=(m+2)^2-4*(-4)(m-3)
\(=m^2+4m+4+16m-48=m^2+20m-44\)
Để bất phương trình vô nghiệm thì
\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)
Bài 1:
a/ Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)
\(\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)
\(\Rightarrow-1< m< 2\)
b/ Để \(f\left(x\right)>0\) vô nghiệm \(\Rightarrow f\left(x\right)\le0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-m+3\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Bài 2:
a/ \(\Leftrightarrow\left\{{}\begin{matrix}2>0\\\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+4m-28< 0\)
\(\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)\left(-1-3m\right)\ge0\end{matrix}\right.\) \(\Rightarrow0< m\le1\)
Bài 3:
\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{cosx.cos\frac{\pi}{4}+sinx.sin\frac{\pi}{4}}{sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}}=\frac{sinx+cosx}{sinx-cosx}\)
a/ \(\Leftrightarrow m^2x-m^2-x-m+2=0\)
\(\Leftrightarrow\left(m^2-1\right)x=m^2+m-2\)
Xét khi \(m^2-1=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0x=1+1-2=0\\0x=1-1-2=-2\left(l\right)\end{matrix}\right.\)
Vậy vs m= 1 pt vô số nghiệm (x>0)
Xét khi \(m^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow x=\frac{m^2+m-2}{m^2-1}\)
Có \(x>0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)>0\\\left(m-1\right)\left(m+1\right)>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)< 0\\\left(m-1\right)\left(m+1\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)
b/ \(\Leftrightarrow mx-m-x+1+m-2=0\)
\(\Leftrightarrow\left(m-1\right)x=1\)
Vs \(m\ne1\)
\(\Rightarrow x=\frac{1}{m-1}\)
Có \(x\ge3\Rightarrow\frac{1}{m-1}\ge3\Leftrightarrow1\ge3m-3\Leftrightarrow m\le\frac{4}{3}\)
Xét \(m=1\Rightarrow0x=1\left(l\right)\)
Vậy vs \(m\le\frac{4}{3}\) thì pt có nghiệm vs x\(\ge3\)
c/ ĐKXĐ: \(9-x^2>0\Leftrightarrow\left(3-x\right)\left(3+x\right)>0\Leftrightarrow-3< x< 3\)
hmm, xem lại hộ cái đề boài nhoa, vế phải trên tử có dấu bằng là sao nhể? =))
ĐKXĐ: \(x\ge-m\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\sqrt{x+m}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-m\end{matrix}\right.\)
Để pt có 3 nghiệm (phân biệt):
\(\Leftrightarrow\left\{{}\begin{matrix}-m\ne-1\\-m\ne2\\-1\ge-m\\2\ge-m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\\m\ge1\\m\ge-2\end{matrix}\right.\) \(\Rightarrow m>1\)