K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Điểm rơi: a=b=c=1

Xét \(a^5+\frac{1}{a}\ge2a^4\)(dấu bằng xảy ra khi và chỉ khi a=1) Trùng với điểm rơi cả Bđt nhá

Tương tự: \(b^5+\frac{1}{b}\ge2b^4\)và \(c^5+\frac{1}{c}\ge2c^4\)

Công lại: \(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(a^4+b^4+c^4\right)\)

Cm: bđt phụ sao: \(a^4+b^4+c^4\ge\frac{\left(a+b+c\right)^4}{27}\left(1\right)\)

Có: \(\hept{\begin{cases}a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\\a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\end{cases}\Rightarrow\left(1\right)}\)

Vì thế: \(Bđt\ge2\left(a^4+b^4+c^4\right)\ge2\cdot\frac{\left(a+b+c\right)^4}{27}=2\cdot\frac{3^4}{3^3}=6\)

10 tháng 6 2019

Theo bất đẳng thức cô-si

a,b,c>0

=> a5+1/a \(\ge\)2√(a5.1/a)= 2a2

Cmtt => b^5+1/b \(\ge\)2b2

1/c+c^5 \(\ge\)2c2

=> A\(\ge\)2( a2+b2+c2\(\ge\)2.(a+b+c)2/3    ( do a2+b2+c2 \(\ge\)

(a+b+c)2/3 , cai  nanày câu co thE tu cm)

A\(\ge\)2.32/3= 6(dpcm)

\(Ta có: a+b+c=0 ⇔(a+b)^5=(−c)^5 ⇔a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=−c5 \)

\(⇔a^5+b^5+c^5=−5ab(a^3+2a^2b+2ab^2+b^3)\)

\(⇔a^5+b^5+c^5=−5ab[(a+b)(a^2−ab+b^2)+2ab(a+b)]\)

\(⇔2(a^5+b^5+c^5)=5abc[a^2+b^2+(a^2+2ab+b^2)]\)

\(⇔2(a^5+b^5+c^5)=5abc(a^2+b^2+c^2)\)(đpcm)

27 tháng 5 2018

1) Liên hợp hay bình phương gì gì cx được nếu bạn rảnh =))

2)Giải PT : $5^{x}= 3^{x}+ 4^{x}$ - Các bài toán và vấn đề về PT - HPT - BPT - Diễn đàn Toán học

27 tháng 5 2018

4) Câu hỏi của VanCan - Toán lớp 8 - Học toán với OnlineMath

8 tháng 8 2016

B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)

TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)

\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)

\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)

\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)

Xem đây là một phương trình bậc hai ẩn a, tham số b.

Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)

\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)

Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)

(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)

TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là 

\(-\frac{4}{3}\le a,b,c\le0\)

Kết hợp 2 trường hợp lại, ta có đpcm.

8 tháng 10 2016

dễ quá 

dễ quá

mình biêt s

làm đó

2 tháng 12 2021

Câu 1

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Câu 2:

\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24

28 tháng 11 2017

B1: Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)}+\frac{1}{xy}\)

\(=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{3}{3xy}\)

\(=\frac{1}{1-3xy}+\frac{\sqrt{3^2}}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=\left(1+\sqrt{3}\right)^2\)

29 tháng 11 2017

Dấu "=" xảy ra khi nào vậy ?

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2