K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

1 2 A M N D B C

A^ + B^ = 90o (phụ nhau)

A^ + 2* A^=90o

3* A^ = 90o

A^= 30o

B^= 2* A^ =2* 30o = 60o

a)

Xét \(\Delta\)ACD và \(\Delta\)ACB:

ACD^ = ACB^= 90o

AC chung

CD =CB

=> \(\Delta\)ACD =\(\Delta\)ACB (2 cạnh góc vuông)

=> AD = AB(2 cạnh tương ứng)

Phải là :Trên AD lấy M,  trên AB lấy N (AM = AN) chứ.

b)

 \(\Delta\)ACD =\(\Delta\)ACB (cmt) => A1 =A2 (2 góc tương ứng)

Xét \(\Delta\)AMC và \(\Delta\)ANC:

AC chung

A1 =A(cmt)

AM =AN

=> \(\Delta\)AMC = \(\Delta\)ANC (c.g.c)

=> CM =CN (2 cạnh tương ứng)

c)

AD = AB (cmt) =. D^ = B^

D^ + B^ + DAB^ =180o

2* D^ +DAB^=180o

D^= \(\frac{180o-DAB}{2}\)                                                             (1)

Ta có: AM = AN => AMN^ = ANM^ 

AMN^ + ANM^ + DAB^ =180o

2* AMN^ + DAB = 180o

AMN^ = \(\frac{180o-DAB}{2}\)                                                          (2)

Từ (1) và (2) => D^ = AMN^ 

Mà D^ so le trong với AMN^ => MN // DB

8 tháng 2 2022

Mình làm câu c thôi ( câu a,b mấy trang khác có nha). Hình mn tự vẽ nha.

Theo b, có: Tam giác DCE là tam giác đều 

=> DCE=CDE=DEC=60

Xét tam giác CND:

Áp dụng định lí:" Tổng ba góc một tam giác bằng 180"

=>CND+CDN+DCN=180

=>CND+60+10=180 (vì ICD=10; CDE= 60)

=>CND=180-70=110 (1)

Xét tam giác CNE:

Áp dụng định lí:"Tổng ba góc một tam giác bằng 180"

=>CNE+CEN+NCE=180

=>CNE+60+(ACB+ECF)=180

=>CNE+60+30+20=180

=>CNE+110=180

=>CNE=70 (2)

Từ (1) và (2) suy ra: CND+CNE=70+110=180

=>DNE=180    =>DNE là góc bẹt

=>D; N; E thẳng hàng (ĐPCM)