Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S=1.2.3.4+2.3.4.5+...+97.98.99.100
5S=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5
5S=1.2.3.4.(5 - 0)+2.3.4.5.(6 - 1)+...+97.98.99.100.(101 - 96)
5S=1.2.3.4.5-0.1.2.3.4+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99
5S=97.98.99.100.101
S=97.98.99.20.101
=>S=1901009880
Đặt A = 1.2.3.4 + 2.3.4.5 + ... + 97.98.99.100
5A = 1.2.3.4.5 + 2.3.4.5.5 + ... + 97.98.99.100.5
5A = 1.2.3.4.5 + 2.3.4.( 6 - 1 ) + ... + 97.98.99.100.( 101 - 96 )
5A = 1.2.3.4.5 + 2.3.4.5.6 - 1.2.3.4.5 + ... + 97.98.99.100.101 - 96.97.98.99.100
5A = 97.98.99.100.101
A = 97.98.99.100.101 : 5
A = 97.98.20.101
A = 19202120
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100} \)
\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)
=\(\frac{1}{3}\cdot\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{4.5.6}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)\)
=\(\frac{1}{18}-\frac{1}{5821200}\)
cách làm của tui đúng nhất nhưng ko bít có giống cách ai ko
đặt S=1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100
5S=(5-0).1.2.3.4+(6-1).2.3.4.5+...+(101-96).97.98.99.100
5S=1.2.3.4.5-0+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100
5S=97.98.99.100.101=9505049400
S=1901009880
1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100
4S=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100). 4
4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...98.99.100.101-97.98.99.100
4S=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98+99.100+101
4S=98.99.100.101
Vậy S = 98.99.100.101/4 = 24497550
Đặt \(A=1.2.3.4+2.3.4.5+...+97.98.99.100\)
\(5A=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5\)
\(5A=1.2.3.4.5+2.3.4.5.\left(6-1\right)+...+97.98.99.100.\left(101-96\right)\)
\(5A=1.2.3.4.5+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100\)
\(5A=97.98.99.100.101\)
\(A=\frac{97.98.99.100.101}{5}=1901009880\)
P = 1/1.2.3.4 + 1/2.3.4.5 + 1/3.4.5.6 + ... + 1/97.98.99.100
P = 1/1-1/2-1/3-1/4+1/2-1/3-1/4-1/5 +....+1/97-1/98-1/99-1/100
P = 1/1-1/100
P = 99/100
Tính giá trị biểu thức P.3.98.99
Cái đó thì bạn tự tính cũng dc dễ mak
A=3(1/1.2+1/2.3+...+1/99.100)
A=3(1-1/2+1/2-1/3+...+1/99-1/100)
A=3(1-1/100)
A=3 . 99/100
A= 297 /100
5B= 1.2.3.4.5+2.3.4.5.5+....+97.98.99.100.5
=1.2.3.4.5+2.3.4.5.6 -1.2.3.4.5+...+-96.97.98.99
=97.98.99.100.101=9505049400
=> B=1901009880
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)
\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+ \frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\frac{161699}{970200}=\frac{161699}{299106000}\)
B=1901009880