Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2( x + y ) - y( x2 + y2 )
= x3 + x2y - x2y - y3
= x3 - y3
Với x = 1 ; y = -1
A = 13 - (-1)3 = 1 + 1 = 2
b) B = 5x( x - 4y ) - 4y( y - 5x )
= 5x2 - 20xy - 4y2 + 20xy
= 5x2 - 4y2
Với x = -0, 6 ; y = -0, 75
B = 5.(-0, 6)2 - 4.(-0, 75)2 = 5.9/25 - 4.9/16 = 9/5 - 9/4 = -9/20
C = x( x - y + 1 ) - y( y + 1 - x )
= x2 - xy + x - y2 - y + xy
= x2 + x - y2 - y
= ( x2 - y2 ) + ( x - y )
= ( x - y )( x + y ) + ( x - y )
= ( x - y )( x + y + 1 )
Thế x = -2/3 ; y = -1/3 ta được
C = [ -2/3 - (-1/3 ) ][ -2/3 - 1/3 + 1 ]
= ( -2/3 + 1/3 ).0
= 0
a, \(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002=x^3-y^3+2002\)
Thay x = 1; y = -1 ta có : \(1^3-\left(-1\right)^3+2002=1-1+2002=2002\)
b, \(5x\left(x-4y\right)-4y\left(y-5x\right)-\frac{11}{20}=5x^2-4y^2-\frac{11}{20}\)
Thay x = -0,6 ; y = -0,75 ta có : \(5.\left(-0,6\right)^2-4\left(-0,75\right)^2-\frac{11}{20}=-1\)
c, \(x\left(x-y+1\right)-y\left(y+1-x\right)=x^2+x-y^2-y\)
Thay x = -2/3 ; y = -1/3 ta có : \(\left(-\frac{2}{3}\right)^2-\frac{2}{3}-\left(-\frac{1}{3}\right)^2+\frac{1}{3}=0\)
a) Thay trực tiếp x=1, y= -1 vào cho nhanh :D
Khi đó A = 12. (1-1) - (-1). [12+(-1)2]
A = 1.0+1.2 = 2
b) B=5x .(x-4y)-4y .(y-5x)- \(\dfrac{11}{20}\)
B = 5x2 - 4y2 - \(\dfrac{11}{20}\)
Thay x = -0,6, y = -0,75 ta đc:
B = 5. (-0,6)2 - 4.(-0,75)2 - \(\dfrac{11}{20}\)
B = -1
c) C= x .(x-y+1)-y .(y+1-x)
C = x(x+1) - y(y+1)
Thay x= \(\dfrac{2}{3}\) , y=\(\dfrac{-1}{3}\) vào ta đc:
C = \(\dfrac{2}{3}\left(\dfrac{2}{3}+1\right)-\left(\dfrac{-1}{3}\right)\left(\dfrac{-1}{3}+1\right)\)
C = \(\dfrac{4}{3}\)
a, P = xy - 5x +20
Thay x=14 , y =5,5 vào đa thức P
P= 14.5,5 -5.14 +20
P= 14.(5,5-5) +20
P= 14. 0,5 +20
P= 7+20
P=27
Q= x2+xy-5x-5y
Thay x=-5 , y=-8
Q= (-5)2+(-5).(-8) -5.(-5)-5.(-8)
Q=(-5).[ (-5) +(-8) +5 +8 ]
Q= (-5). 0
Q= 0
Chúc bạn học tốt
P=xy -5x -4y+20 =x(y-5)-4(y-5)=(x-4)(y-5)
P(14,5,5) =(14-4)(5,5-5)=10.0,5=5
Q=x^2 +xy-5x-5y =x(x+y) -5(x+y) =(x+y)(x-5)
Q(-5,-8) =(-5-8)(-5-5) =130
Lời giải:
a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$
$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.
$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$
$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$
d.
$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$
$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$
$=-x^2y+4x^2-2xy^2-10x$
$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$
Bài 2:
a.
\(3x(x-4y)-\frac{12}{5}y(y-5x)=3x^2-12xy-\frac{12}{5}y^2+12xy\)
\(=3x^2-\frac{12}{5}y^2=3.4^2-\frac{12}{5}.(-5)^2=-12\)
b.
\(u=\frac{-1}{3}; v=\frac{-2}{3}\Rightarrow u+v+1=0\)
\(2u(1+u-v)-v(1-2u+v)=2u(1+u+v-2v)+v(1+u+v-3u)\)
\(=2u.(-2v)+v(-3u)=-4uv-3uv=-7uv=-7.\frac{-1}{3}.\frac{-2}{3}=\frac{-14}{9}\)
Bài 1:
\(A=x^6-(x^6-x^5)-(x^5+x^4)+(x^4-x^3)+(x^3+x^2)-(x^2+x)+1\)
\(=-x+1=-(x-1)=-(999-1)=-998\)
a) \(25x^2y-10xy+30xy^2=xy\left(25x+30y-10\right)\)
b) \(16x^2-20x=4x\left(4x-5\right)\)
c) \(18x^3+12x^2-30x=x\left(18x^2+12x-30\right)=x\left(x-1\right)\left(18x+9\right)=96x\left(x-1\right)\left(x+\dfrac{5}{3}\right)\)
d) \(14x\left(x+y\right)-4y\left(x+y\right)=\left(14x-4y\right)\left(x+y\right)\)
e) \(9x^3y^2+12xy^2+15x^2y^2=3xy^2\left(3x^2+5x+4\right)\)
f) \(x\left(x-3\right)-y\left(3-x\right)=x\left(x-3\right)+y\left(x-3\right)=\left(x+y\right)\left(x-3\right)\)
g) \(5x\left(x+4\right)-2y\left(4+x\right)=\left(x+4\right)\left(5x-2y\right)\)
A = x2(x + y) - y(x2 - y) + 2002
A = x2.x + x2.y + (-y).x2 + (-y)(-y) + 2002
A = x3 + x2y - x2y + y2 + 2002
A = x3 + (x2y - x2y) + y2 + 2002
A = x3 + y2 + 2002 (1)
Thay x = 1, y = -1 vào (1), ta có:
A = x3 + y2 + 2002 = 13 + (-1)2 + 2002
= 1 + 1 + 2002
= 2004
B làm tương tự
cam on bn nhieu nha