\(\dfrac{2}{x+3}\)=\(\dfrac{x+5}{x+3}\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

a, ĐKXĐ:\(x\ne-3\)

\(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+5}{x+3}-\dfrac{2}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+3}{x+3}\\ \Leftrightarrow x+1=1\\ \Leftrightarrow x=0\left(tm\right)\)

b, ĐKXĐ:\(x>2\)

\(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\\ \Leftrightarrow x^2-4x-2=x-2\\ \Leftrightarrow x^2-5x=0\\ \Leftrightarrow x\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Câu a:

ĐKXĐ: \(x\neq \pm 3\)

\(\left|\frac{x+5}{-x^2+9}\right|=2\Rightarrow \left[\begin{matrix} \frac{x+5}{-x^2+9}=2\\ \frac{x+5}{-x^2+9}=-2\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x+5=2(-x^2+9)\\ x+5=-2(-x^2+9)\end{matrix}\right.\Rightarrow \left[\begin{matrix} 2x^2+x-13=0\\ 2x^2-x-23=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{105}}{4}\\ x=\frac{1\pm \sqrt{185}}{4}\end{matrix}\right.\) (đều thỏa mãn )

Vậy.......

AH
Akai Haruma
Giáo viên
28 tháng 11 2018

Câu b:

ĐKXĐ: \(x< 2\)

Ta có: \(\frac{4}{\sqrt{2-x}}-\sqrt{2-x}=2\)

\(\Rightarrow 4-(2-x)=2\sqrt{2-x}\)

\(\Leftrightarrow 4=(2-x)+2\sqrt{2-x}\)

\(\Leftrightarrow 5=(2-x)+2\sqrt{2-x}+1=(\sqrt{2-x}+1)^2\)

\(\Rightarrow \sqrt{2-x}+1=\sqrt{5}\) (do \(\sqrt{2-x}+1>0\) )

\(\Rightarrow \sqrt{2-x}=\sqrt{5}-1\)

\(\Rightarrow 2-x=6-2\sqrt{5}\)

\(\Rightarrow x=-4+2\sqrt{5}\) (thỏa mãn)

Vậy...........

2 tháng 4 2017

a) \(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x+\dfrac{x+5}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x=0\)

b) \(2x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x\left(x-1\right)+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}-x\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x\left(x-1\right)}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x^2+x}{x-1}\)

\(\Leftrightarrow x^2-x+3=3x-x^2+x\) ( điều kiện \(x\ne1\) )

\(\Leftrightarrow2x^2-5x+3=0\)

\(\Delta=b^2-4ac\)

\(\Delta=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=1\left(loại\right)\end{matrix}\right.\)

Vậy \(x=\dfrac{3}{2}\)

c) \(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\)

\(\Leftrightarrow x^2-4x-2=\sqrt{\left(x-2\right)^2}\) ( điều kiện \(x>2\) )

\(\Leftrightarrow x^2-4x-2=x-2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\end{matrix}\right.\)

Vậy \(x=5\)

d) \(\dfrac{2x^2-x-3}{\sqrt{2x-3}}=\sqrt{2x-3}\)

\(\Leftrightarrow2x^2-x-3=\sqrt{\left(2x-3\right)^2}\) ( điều kiện \(x>\dfrac{3}{2}\) )

\(\Leftrightarrow2x^2-x-3=2x-3\)

\(\Leftrightarrow2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

9 tháng 12 2018

5. \(y=\dfrac{-3x}{x+2}\)

xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)

vậy D= (\(-\infty;+\infty\))\{-2}

6. \(y=\sqrt{-2x-3}\)

xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)

vậy D= (\(-\infty;\dfrac{-3}{2}\)]

7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)

xác định khi: x-4 >0 <=> x>4

vậy D= (\(4;+\infty\))

8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)

xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)

vậy D= (\(-\infty;5\))\ {3}

9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)

xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)

vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]

9 tháng 12 2018

1. \(y=\dfrac{3x-2}{x^2-4x+3}\)

xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)

vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)

2.\(y=2\sqrt{5-4x}\)

xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)

vậy D= (\(-\infty;\dfrac{5}{4}\)]

3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)

xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)

vậy D= (\(-3;\dfrac{5}{2}\)]

4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)

xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)

Vậy D= [\(-2;9\)]\{2}

a: ĐKXĐ: 3-2x>=0

=>x<=3/2

b: DKXĐ: \(\left\{{}\begin{matrix}4x+1>=0\\-2x+1>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\x< =\dfrac{1}{2}\end{matrix}\right.\)

c: ĐKXĐ: x^2+2x-5<>0

hay \(x\ne-1\pm\sqrt{6}\)

d: ĐKXĐ: 2-x>0 và 4x+3>=0

=>x>=-3/4 và x<2

e: ĐKXĐ: (x+10)(x-2)<>0 và x>=-9

=>x>=-9 và x<>2

2 tháng 4 2017

a, ĐK x\(\ge5\) Đặt \(\sqrt{x-5}=y\Rightarrow x=y^2+5\)

Phương tình đã cho trở thành:\(y^2+5+y=y+6\)

\(\Leftrightarrow y^2-1=0\)

\(\Leftrightarrow y=-1;y=1\)

y=-1 loại vì \(\sqrt{x=5}\ge0\)

Ta có \(y=1\Rightarrow\sqrt{x-5}=1\Leftrightarrow x=6\)

b,làm tương tự câu a

c,ĐK:\(x\ge2\) Phương trình đã cho tương đương:\(\dfrac{x^2-8}{\sqrt{x-2}}=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\sqrt{2}\\x_2=-2\sqrt{2}\left(l\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=2\sqrt{2}\).

8 tháng 5 2017

b) Đkxđ: \(\left\{{}\begin{matrix}1-x\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x=1\).
Thay x = 1 vào phương trình ta có:
\(\sqrt{1-1}+1=\sqrt{1-1}+2\)\(\Leftrightarrow1=2\) (vô lý).
Vậy phương trình vô nghiệm.

2 tháng 8 2018

Giải ra dùm mình lun nha. Cảm ơn nhìu

a: ĐKXĐ: x-1>0 và x+2<>0

=>x>1

b: DKXĐ: (x-2)căn x-1<>0

=>x-1>0 và x-2<>0

=>x>1 và x<>2

c: ĐKXĐ: 2x-1>=0 và 3-x>0

=>x>=1/2 và x<3

d: ĐKXĐ: x-1>0 và x-2<>0

=>x>1 và x<>2

e: ĐKXĐ: x3+1>=0

=>x>=-1

7 tháng 11 2018

1) \(y=\dfrac{2x^2+1}{x^3-5x+4}\)

ĐK \(x^3-5x+4\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\dfrac{\sqrt{17}-1}{2}\\x\ne\dfrac{-\sqrt{17}-1}{2}\end{matrix}\right.\)

TXĐ \(D=R\backslash\left\{1;\dfrac{\sqrt{17}-1}{2};\dfrac{-\sqrt{17}-1}{2}\right\}\)

2) \(y=\dfrac{\sqrt{x-2}}{\left(x-3\right)^3-1}\)

ĐK \(\left\{{}\begin{matrix}x-2\ge0\\x-3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne4\end{matrix}\right.\)

TXĐ \(D=[2;+\infty)\backslash\left\{4\right\}\)

3) \(y=\sqrt{x-2}-\dfrac{2}{\sqrt[3]{x-1}}\)

ĐK\(\left\{{}\begin{matrix}x+2\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne1\end{matrix}\right.\)

TXĐ \(D=[-2;+\infty)\backslash\left\{1\right\}\)

4) \(y=\dfrac{x^2+2}{\sqrt{\left(x+3\right)^2}}=\dfrac{x^2+2}{\left|x-3\right|}\)

ĐK \(x-3\ne0\Leftrightarrow x\ne3\)

TXĐ \(D=R\backslash\left\{3\right\}\)

5) \(y=\dfrac{\sqrt{x^2-2}}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

ĐK \(\left\{{}\begin{matrix}x^2-2\ge0\\x>0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in(-\infty;-\sqrt{2}]\cap[\sqrt{2};+\infty)\\x>0\\x\ne9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge\sqrt{2}\\x\ne9\end{matrix}\right.\)

TXĐ \(D=[\sqrt{2};+\infty)\backslash\left\{9\right\}\)

6) \(y=\sqrt{1-\sqrt{1+x}}\)

ĐK \(\left\{{}\begin{matrix}x+1\ge0\\1-\sqrt{1+x}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\1\ge\sqrt{1+x}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\1\ge1+x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le0\end{matrix}\right.\)

TXĐ \(D=\left[0;-1\right]\)

6 tháng 10 2017

a. R / \(\left\{-2\right\}\)

b. R / \(\left\{4;-1\right\}\)

c. R ( mẫu luôn > 0 )

d. \(\left(2;+\infty\right)\)

6 tháng 10 2017

e. \(\left(-\infty;\dfrac{5}{6}\right)\)

f. \(\left(2;+\infty\right)\)

g. \(\left(1;3\right)\)

h. \(\left(5;+\infty\right)\)

i. \(\left(1;+\infty\right)\)

k. \(\left(-\infty;2\right)\)

l. R/\(\left\{\pm3\right\}\)

m. \(\left(-2;+\infty\right)/\left\{3\right\}\)

16 tháng 4 2020

a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\) => bpt vô nghiệm

b/ ĐKXĐ: \(x>1\)

\(bpt\Leftrightarrow x-2< 2\Leftrightarrow x< 4\)

\(\Rightarrow1< x< 4\)

c/ \(\frac{x+2}{3}-2x-2>0\)

\(\Leftrightarrow\frac{x+2-6x-6}{3}>0\Leftrightarrow x+2-6x-6>0\Leftrightarrow x< -\frac{4}{5}\)

d/ \(bpt\Leftrightarrow\frac{3x+5}{2}-\frac{x+2}{3}-x-1\le0\)

\(\Leftrightarrow\frac{9x+15-2x-4-6x-6}{6}\le0\)

\(\Leftrightarrow x\le-5\)

2 tháng 7 2017

mấy câu này chắc xài giá trị tuyệt đối

đăng ít thôi bn sợ quá :))