Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=3\left(x+5\right)+x^2\)
Thay x = 1 vào A, ta được:
\(A=3\left(1+5\right)+1^2\)
\(A=3.6+1\)
\(A=19\)
b) \(B=3x\left(x+2\right)-x\left(x+1\right)\)
Thay x = -1 vào B, ta được:
\(B=3.\left(-1\right)\left(-1+2\right)-\left(-1\right)\left(-1+1\right)\)
\(B=-3-0\)
\(B=-3\)
c) \(C=7x\left(x-5\right)+3\left(x-2\right)\)
Thay x = 0 vào C, ta được:
\(C=7.0.\left(0-5\right)+3.\left(0-2\right)\)
\(C=0+3.\left(-2\right)\)
\(C=-6\)
d) \(D=-2x\left(x+1\right)+4\left(x+2\right)\)
Thay x = -1 vào D, ta được:
\(D=-2\left(-1\right)\left(-1+1\right)+4\left(-1+2\right)\)
\(D=0+4\)
\(D=4\)
e) \(E=x^2-x+2x\left(x+3\right)\)
Thay x = 2 vào E, ta được:
\(E=2^2-2+2.2\left(2+3\right)\)
\(E=4-2+4.5\)
\(E=22\)
f) \(F=5-4x\left(x-2\right)\)
Thay x = -1 vào F, ta được:
\(F=5-4.\left(-1\right)\left(-1-2\right)\)
\(F=5-12\)
\(F=-7\)
g) \(G=x\left(x-5\right)-2x\left(x+1\right)+x^2\)
Thay x = -2 vào G, ta được:
\(G=-2\left(-2-5\right)-2.\left(-2\right)\left(-2+1\right)+\left(-2\right)^2\)
\(G=14-4+4\)
\(G=14\)
h) \(H=x\left(7x+2\right)-5x\left(x+3\right)\)
Thay x = 1 vào H, ta được:
\(H=1\left(7.1+2\right)-5.1\left(1+3\right)\)
\(H=9-20\)
\(H=-11\)
i) \(I=3x^2-2x\left(x-5\right)+x\left(x-7\right)\)
Thay x = 10 vào I, ta được:
\(I=3.10^2-2.10\left(10-5\right)+10.\left(10-7\right)\)
\(I=300-100+30\)
\(I=230\)
`b,(x+5)(2x-3)=0`
`<=>` $\left[ \begin{array}{l}x+5=0\\2x-3=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=\dfrac{3}{2}\\x=-5\end{array} \right.$
Vậy `S={-5,3/2}`
a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)
=>(x+5)(x-3)+8=x^2-1
=>x^2+2x-15+8=x^2-1
=>2x-7=-1
=>x=3(loại)
b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)
=>(x-4)(x+1)+x^2+3+5(x-1)=0
=>x^2-3x-4+x^2+3+5x-5=0
=>2x^2+2x-6=0
=>x^2+x-3=0
=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)
e: =>x^2-2x+1+2x+2=5x+5
=>x^2+3=5x+5
=>x^2-5x-2=0
=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)
g: (x-3)(x+4)*x=0
=>x=0 hoặc x-3=0 hoặc x+4=0
=>x=0;x=3;x=-4
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)