Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=1+2+2^2+2^3+...+2^{61}\)
\(=\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{58}+2^{59}+2^{60}+2^{61}\right)\)
\(=15+2^4\cdot15+...+2^{58}\cdot15\)
\(=15\left(1+16+...+2^{58}\right)⋮5\)(đpcm)
Ta có : A= 5^1+5^2+...+5^20= (5+5^2)+(5^3+5^4)+...+(5^19+5^20)=5+5^2*(1+5+5^2+5^3+5^4+...+5^19)= 30*(1+5^2+5^3+5^4+...+5^19) chia hết cho 30
Vậy A chia hết cho 30
a, S = 5+52+53+.....+52006
5S = 52+53+54+....+52007
4S = 5S - S = 52007-5
=> S = \(\frac{5^{2007}-5}{4}\)
b, Nếu chia hết cho 156 thì mik làm được còn 126 thì chịu
S=(1+2)+(22+23)+.....+(26+27)
S= 3 +22(1+2)+....+26(1+2)
S= 3 +22.3+.....+26.3
S= 3(1+22+.....+26)chia hết cho 3
Tick mình đầu tiên nha
\(5+5^3+5^5+5^7+..+5^{27}\)
\(=\left(5+5^3\right)+5^4\left(5+5^3\right)+...+5^{24}\left(5+5^3\right)\)
\(=130+130\cdot5^4+...+130\cdot5^{24}\)
\(=130\left(1+5^4+..5^{24}\right)\)
Vì \(130⋮26\Rightarrow5+5^3+5^5+...+5^{27}⋮26\left(đpcm\right)\)
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
a) S = 5 + 52 + ... + 52006
5A = 52 + 53 + ... + 52007
5A - A = ( 52 + 53 + ... + 52007 ) - ( 5 + 52 + ... + 52006 )
4A = 52007 - 5
A = 52007 - 5 / 4
b) Để S chia hết cho 26 thì S chẵn
Dễ thấy S là số lẻ ( vì toàn chứa hạng tử lẻ ) => S không chia hết cho 26 ( đpcm )
a. \(S=5+5^2+5^3+...+5^{2006}\)
=> \(5S=5^2+5^3+5^4+...+5^{2007}\)
=> \(4S=5S-S=5^{2007}-5\)
=> \(S=\frac{5^{2007}-5}{4}\)