Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=-\left|5-x\right|+2019\le2019\forall x\)
Dấu '=' xảy ra khi x=5
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
\(P=-x^2-8x+5\)
\(=-x^2-8x-16+21\)
\(=-\left(x^2+8x+16\right)+21\)
\(=21-\left(x+4\right)^2\)
\(\left(x+4\right)^2\ge0\)
\(-\left(x+4\right)^2\le0\)
\(21-\left(x+4\right)^2\le21\)
\(P_{max}=21\Leftrightarrow x=-4\)
Mấy bạn kia làm sai hết rồi !!
P = |2013 - x| + |2014 - x| = |2013 - x| + |x - 2014|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
P = |2013 - x| + |x - 2014| ≥ |2013 - x + x - 2014| =|- 1| = 1
Dấu "=" xảy ra <=> (2013 - x)(x - 2014) ≥ 0 <=> 2013 ≤ x ≤ 2014
Dậy gtnn của P là 1 <=> 2013 ≤ x ≤ 2014
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014-x\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)
\(\Rightarrow\)\(Min_P=4027\)
\(P=\left(x-2\right)^2+\left|y-x\right|+3\)
\(\left(x-2\right)^2>=0\forall x\)
\(\left|y-x\right|>=0\forall x,y\)
Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)
=>x=y=2
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,