K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

kết quả hay cả lời giải

19 tháng 9 2021

ILoveMath                                                          , lời giải

18 tháng 9 2021

Mn giúp e với ak

18 tháng 9 2021

a) \(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)

\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x

⇒x∈\(R\)

b) \(\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)

\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x

⇒x∈\(R\)

13 tháng 6 2019

\(A=2\sqrt{5}-\sqrt{45}+2\sqrt{20}=2\sqrt{5}-\sqrt{3^2.5}+2\sqrt{2^2.5}=2\sqrt{5}-3\sqrt{5}+4\sqrt{5}=3\sqrt{5}\)

\(B=\left(\sqrt{18}-\frac{1}{2}\cdot\sqrt{32}+12\sqrt{2}\right):\sqrt{2}=\left(3\sqrt{2}-\frac{1}{2}\cdot4\sqrt{2}+12\sqrt{2}\right):\sqrt{2}\)

\(=13\sqrt{2}:\sqrt{2}=13\)

\(C=\left(\sqrt{12}+2\sqrt{27}-3\sqrt{3}\right)\cdot\sqrt{3}=\left(2\sqrt{3}+6\sqrt{3}-3\sqrt{3}\right)\cdot\sqrt{3}=5\sqrt{3}\cdot\sqrt{3}=15\)

\(D=\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}=-\sqrt{5}+15\sqrt{2}\)

Ta có: \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)

\(=\dfrac{2}{3}\)

Ta có: \(a=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)

\(=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)

=2

Thay a=2 và \(b=\dfrac{2}{3}\) vào M, ta được:

\(M=\dfrac{1+2\cdot\dfrac{2}{3}}{2+\dfrac{2}{3}}-\dfrac{1-2\cdot\dfrac{2}{3}}{2-\dfrac{2}{3}}\)

\(=\dfrac{7}{8}+\dfrac{1}{4}\)

\(=\dfrac{7}{8}+\dfrac{2}{8}=\dfrac{9}{8}\)

a: \(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}=3\sqrt{5}\)

b: \(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}=9\sqrt{2}\)

c: \(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}=7\sqrt{3}-\sqrt{5}\)

d: \(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}=-\sqrt{3}\)

e: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)

=7-2*căn 21+2*căn 21

=7

f: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}\)

=22-3*căn 22+3*căn 22

=22

 

27 tháng 7 2023

a) \(3\sqrt{5}+\sqrt{20}-2\sqrt{5}\)

\(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}\)

\(=3\sqrt{5}\)

b) \(2\sqrt{2}+\sqrt{8}+\sqrt{50}\)

\(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}\)

\(=9\sqrt{5}\)

c) \(4\sqrt{3}+\sqrt{27}-\sqrt{45}+2\sqrt{5}\)

\(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}\)

\(=7\sqrt{3}-\sqrt{5}\)

d) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)

\(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\)

\(=-\sqrt{3}\)

e) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

\(=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

\(=\left(\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)

\(=7-2\sqrt{21}+2\sqrt{21}\)

\(=7\)

f) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{22}\)

\(=22-3\sqrt{22}+3\sqrt{22}\)

\(=22\)

g) \(3\sqrt{45}-5\sqrt{125x}+7\sqrt{20x}+28\)

\(=9\sqrt{5}-25\sqrt{5x}+14\sqrt{5x}+28\)

\(=9\sqrt{5}-11\sqrt{5x}+28\)

3 tháng 11 2023

\(\left(\sqrt{12}+\sqrt{27}-\sqrt{18}\right)\cdot3\\ =(\sqrt{4\cdot3}+\sqrt{9\cdot3}-\sqrt{6}\cdot\sqrt{3})\cdot\sqrt{3}\\ =\left(2\sqrt{3}+3\sqrt{3}-\sqrt{6}\cdot\sqrt{3}\right)\cdot\sqrt{3}\\ =2\cdot3+3\cdot3-\sqrt{6}\cdot3\\ =6+9-3\sqrt{6}\\ =15-3\sqrt{6}\)

\(\left(15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\right):\sqrt{5}\\ =\left(15\sqrt{4\cdot5}-3\sqrt{9\cdot5}+2\sqrt{5}\right):\sqrt{5}\\ =\left(30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\right):\sqrt{5}\\ =30-9+2\\ =23\)

17 tháng 10 2016

bằng 3/2 bạn ak

17 tháng 5 2021

`a)A=\sqrt{4+2sqrt3}`

`=\sqrt{3+2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}`

`=sqrt3+1`

`B)1/(2-sqrt3)+1/(2+sqrt3)`

`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`

`=2+sqrt3+2-sqrt3`

`=4`

`\sqrt{4x-12}+sqrtx{x-3}-1/3sqrt{9x-27}=8`

`đk:x>=3`

`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`

`<=>2sqrt{x-3}=8`

`<=>sqrt{x-3}=4`

`<=>x-3=16`

`<=>x=19`

Vậy `S={19}`

17 tháng 5 2021

`a)A=\sqrt{4+2sqrt3}`

`=\sqrt{3+2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}`

`=sqrt3+1`

`B)1/(2-sqrt3)+1/(2+sqrt3)`

`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`

`=2+sqrt3+2-sqrt3`

`=4`

`\sqrt{4x-12}+sqrt{x-3}-1/3sqrt{9x-27}=8`

`đk:x>=3`

`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`

`<=>2sqrt{x-3}=8`

`<=>sqrt{x-3}=4`

`<=>x-3=16`

`<=>x=19`

Vậy `S={19}`