K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

a) Đặt B= 1/1.3 + 1/3.5 + 1/5.7 + .....+ 1/19.21

Ta có: 2B= 2/1.3 + 2/3.5 + 2/5.7 + ....+ 2/19.21

= 1- 1/3 + 1/3-1/5 + 1/5-1/7 +....+ 1/19-1/21

= 1-1/21 = 20/21

=> B= 20/21 : 2 => B= 10/21

b) Như trên, ta có: 2A= 1- (1/2n + 1) => A=( 1-1/2n+1).1/2

=> A= 1/2- 1/2n+1

=> A< 1/2 ( đpcm )

26 tháng 12 2018

ấy chết

A= 1/2 - 1/2.(2n+1) nha bạn

11 tháng 12 2018

tớ làm câu b thôi, câu a nhân 1/2 lên là đc 

\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)

p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)

13 tháng 8 2020

\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)

\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)

\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)

\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)

\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)

\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)

\(\Rightarrow S=125,4372197\)

\(\)

4 tháng 4 2021

thx  you

10 tháng 1 2018

Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)

10 tháng 1 2018

bn rảnh nhỉ

5 tháng 3 2019

bn lên ngạng hoặc và xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK

5 tháng 3 2019

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(2C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

Ta có : 

\(\frac{2}{1.3}=1-\frac{1}{3}\)

\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)

...............................

\(\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(\Rightarrow2C=1-\frac{1}{2n+1}=\frac{2n}{2n+1}\)

\(\Rightarrow C=\frac{n}{2n+1}\)

19 tháng 7 2018

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)

\(1-\frac{1}{\left(2n+3\right)}\)

cách làm này ko biết sai hay đúng nên hãy cẩn thận

19 tháng 7 2018

hơi khó bn ơi

3 tháng 4 2020

Ta có:\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)=\frac{1}{2}\left(1-\frac{1}{21}\right)=\frac{1}{2}.\frac{20}{21}=\frac{10}{21}\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)\(+...+\frac{1}{19.21}\)

=\(\frac{2}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\right)\)

=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{19.21}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{21}\right)\)

=\(\frac{1}{2}.\frac{20}{21}\)

=\(\frac{20}{42}=\frac{10}{21}\)

1 tháng 3 2020

Đặt tên bthuc là A

\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)

\(2A=1-\frac{1}{21}=\frac{20}{21}\)

=>\(A=\frac{20}{21}:2=\frac{10}{21}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{17.19}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{17}-\frac{1}{19}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{19}\right)=\frac{1}{2}.\left(\frac{18}{19}\right)\)

\(=\frac{9}{19}\)

3 tháng 12 2017

2A = 2/1.3+2/3.5+....+2/(2n-1).(2n+1)

     = 1-1/3+1/3-1/5+.....+1/2n-1 - 1/2n+1

     = 1-1/2n+1 < 1

=> A < 1/2

=> ĐPCM

k mk nha