Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
- Để P(y)=0
\(\Leftrightarrow3y-6=0\)
\(\Leftrightarrow3y=6\)
\(\Leftrightarrow y=2\)
Vậy P(y) có nghiệm là 2
- Để M(x)=0
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Rightarrow x\in\){2;-2}
Vậy M(x) có nghiệm là 2 và -2
b)
Ta có:
\(x^4\ge0\)
\(\Rightarrow x^4+1\ge1>0\)
\(\Rightarrow Q\left(x\right)>0\)
\(\Rightarrow Q\left(x\right)\ne0\)
Vậy Q(x) vô nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Bài 1:
a)2x-6
Ta có:2x-6=0
2x=6
=>x=3
Vậy x=3 là nghiệm của đa thức a)
b)(6-x)(4-2x)
Ta có:(6-x)(4-2x)=0
Th1:6-x=0 =>x=6
Th2:4-2x=0
2x=4 =>x=2
Vậy x=2 và 6 là nghiệm của đa thức b)
c)x2+x
Ta có:x2+x=0
x(x+1)=0
TH1:x=0
TH2:x+1=0 =>x=-1
Vậy x=0 và -1 là nghiệm của đa thức c)
d)x2-81
Ta có:x2-81=0
x2=81
=>x=+_ 9
Vậy x=+_ 9 là nghiệm của đa thức d)
e)(2-x)(x2+1)
Ta có:(2-x)(x2+1)=0
TH1:2-x=0 =>x=2
TH2:x2+1=0
x2=-1 (loại)
Vậy x=2 là nghiệm đa thức e)
Bài 2:
P(x)=-2-3x2
Ta có:
-3x2≤0 với mọi x
=>-2-3x2<-2 với mọi x
Vậy đa thức P(x) vô nghiệm
Q(y)=y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)
Ta có:
y2≥0 với mọi y
y4≥0 với mọi y
=>\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4≥0 với mọi y
=>y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)≥\(\dfrac{1}{4}\)>0 với mọi y
Vậy đa thức Q(y) vô nghiệm
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
a) 2x+6=0 => 2x=-6 => x=-6:2=-3
ĐS: x=-3
b) Ta có:
M(y)=2y4+3y2+1=y4+2y2+1+y4+y2=(y2+1)2+y2(y2+1)=(y2+1)(y2+1+y2)=(y2+1)(2y2+1)
Nhận thấy; y2+1 và 2y2+1 luôn lớn hơn 1 với mọi y
=> M(y) lớn hơn 1 với mọi y => Đa thức M(y) không có nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
\(a)\)
\(\text{Ta có:}\)
\(x^2-2=0\)
\(\rightarrow x^2=x\)
\(\rightarrow x=\pm\sqrt{2}\)
Vậy ...
\(b)\)
\(\text{Ta có:}\)
\(x^2+5x+7\)
\(\rightarrow x^2+2x\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{3}{4}\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2\ge0\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy ...
a, Đặt \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
b, Ta có : \(Q\left(x\right)=x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy đa thức ko có nghiệm
a, Ta có
\(D\left(x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy...
b,
Ta có
\(x^4\ge0\)
\(\Rightarrow13x^4\ge0\)
\(\Rightarrow13x^4+2\ge2\)
\(\Rightarrow13x^4+2>0\)
\(\Rightarrowđpcm\)
a. D(x)=o
tương đương: x(x-2)=0
mà x khác x-2 nên để x(x-2)=o thì
x=0 hoặc x-2=0
suy ra : x=0 hoặc x=2
vậy nghiệm của đa thức D(x) là 0 hoặc 2
b.ta thấy:
x^4>=0(với mọi x)
nên 13x^4>=0
suy ra 13x^4+2>=2
vậy đa thức P(x) không có nghiệm