Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).
2 câu là tìm GTNN đúng hông bạn :)
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(A=2000\left(x-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(x-1=0\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(A\) là \(0\) khi \(x=1\)
\(b)\) Ta có :
\(\left|x-3\right|\ge0\)
\(\Rightarrow\)\(B=\left|x-3\right|+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-3\right|=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(B\) là \(5\) khi \(x=3\)
Chúc bạn học tốt ~
a,\(\frac{x+1}{2}\)\(=\frac{8}{x+1}\)
\(\Leftrightarrow\)(x+1)\(\times\)(x+1) = 8 \(\times\)2
\(\Leftrightarrow\)(x+1)2 = 16
\(\Leftrightarrow\)(x+1)2 = 42
\(\Rightarrow\)x+1 = 4
\(\Rightarrow\)x = 4 - 1
\(\leftrightarrow\)x = 3
\(\frac{\left|x\right|+2015}{2016}\) . Có: \(\left|x\right|\ge0\Rightarrow\left|x\right|+2015\ge2015\Rightarrow\frac{\left|x\right|+2015}{2016}\ge\frac{2015}{2016}\)
Dấu = xảy ra khi \(x+2015=0\Rightarrow x=0\)
Vậy \(Min\frac{\left|x\right|+2015}{2016}=\frac{2015}{2016}\) tại \(x=0\)
\(\frac{\left|x\right|+1996}{-1997}\) có \(\left|x\right|\ge0\Rightarrow\left|x\right|+1996\ge1996\Rightarrow\frac{\left|x\right|+1996}{-1997}\le-\frac{1996}{1997}\)
Dấu = xảy ra khi \(\left|x\right|+1996=1996\Rightarrow x=0\)
Vậy \(Max\frac{\left|x\right|+1996}{-1997}=\frac{1996}{-1997}\) tại \(x=0\)
Vì: \(\left|x+2\right|\ge0\)
=> \(\left|x+2\right|+3\ge3\)
=>\(B\le\frac{1}{3}\)
Vậy GTLN của D là \(\frac{1}{3}\) khi x=2
a,\(\frac{x}{\sqrt{x}+1}=\frac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}\)
\(=\left(\sqrt{x}-1\right)+\frac{1}{\sqrt{x}-1}+2\ge2.\sqrt{\left(\sqrt{x}-1\right).\frac{1}{\sqrt{x}-1}+2}\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow\sqrt{x}-1=1\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\left(t/m\right)\)
Dmin = 4 <=> x=4
b,\(\frac{\sqrt{x-9}}{5x}\)
\(\sqrt{x-9}=\sqrt{\frac{\left(x-9\right).9}{9}}=\frac{1}{3}.\sqrt{\left(x-9\right).9}\le\frac{1}{3}.\frac{x-9+9}{2}=\frac{x}{2}\)
\(\Rightarrow D\le\frac{x}{\frac{6}{5x}}=\frac{x}{30x}=\frac{1}{30}\)
Dấu "=" xảy ra \(\Leftrightarrow x-9=9\Leftrightarrow x=18\)
Dmax=\(\frac{1}{30}\Leftrightarrow x=18\)
P/s : ko chắc lắm
\(a)\)\(P=\frac{x}{\sqrt{x}+1}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}-\frac{2\sqrt{x}+2}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{1}{\sqrt{x}+1}}-2=2-2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\sqrt{x}+1=\frac{1}{\sqrt{x}+1}\)\(\Leftrightarrow\)\(x=0\)
...