K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

a) \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)

b) \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)

c) \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{\sqrt{8}\left|a\right|}=\dfrac{1}{-\sqrt{8}a}=\dfrac{-\sqrt{8}}{8a}\)

a: \(\sqrt{4\left(a-3\right)^2}=2\cdot\left(a-3\right)=2a-6\)

b: \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)

c: \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)

 

\(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)

\(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}=\dfrac{1}{2\sqrt{2}a}\)

30 tháng 5 2017

a. \(\sqrt{\dfrac{63y^3}{7y}}\)=\(\sqrt{9y^2}\)=3y

b.\(\sqrt{\dfrac{48x^3}{3x^5}}\)=\(\sqrt{16\cdot\dfrac{1}{X^2}}\)= \(\sqrt{16}\cdot\sqrt{\dfrac{1}{X^2}}\)=\(4\cdot\dfrac{1}{X}=\dfrac{4}{X}\)

c.\(\sqrt{\dfrac{45mn^2}{20m}}=\sqrt{\dfrac{9n^2}{4}}=\dfrac{\sqrt{9n^2}}{\sqrt{4}}=\dfrac{3n}{2}\)

d. \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{2\sqrt{2}a}\)

19 tháng 9 2017

a) \(\dfrac{\sqrt{63y^3}}{\sqrt{7y}}=\sqrt{\dfrac{63y^3}{7y}}=\sqrt{9y^2}=3y\)

b) \(\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}}=\sqrt{\dfrac{48x^3}{3x^5}}=\sqrt{\dfrac{16}{x^2}}=\dfrac{4}{x}\)

c) \(\dfrac{\sqrt{45mn^2}}{\sqrt{20m}}=\sqrt{\dfrac{45mn^2}{20m}}=\sqrt{\dfrac{9n^2}{4}}=\dfrac{3n}{2}\)

d) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{2\left|a\right|\sqrt{2}}=\dfrac{-1}{2a\sqrt{2}}\)

2 tháng 7 2019

\(\left(a\right)\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\\ =\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{3}\left(\sqrt{2}-\sqrt{3}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}+\sqrt{6}}\\ =\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}\\ =\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}\\ =\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

\(\left(b\right) \frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\\ =\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2\right)}{\sqrt{2}+\sqrt{3}+2}\\=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\\ =\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}\\ =1+\sqrt{2}\)

\(\left(c\right)\sqrt{9\left(3-a\right)^2}vớia>3\\ =\sqrt{9}.\sqrt{\left(3-a\right)^2}\\ =3.\left|3-a\right|\\ =-3\left(3-a\right)vì.a>3\\ =3a-9\)

\(\left(d\right)\sqrt{a^2.\left(a-2\right)^2}vớia< 0\\ =\sqrt{\left[a\left(a-2\right)\right]^2}\\ =\left|a\left(a-2\right)\right|=-a.\left[-\left(a-2\right)\right]=a\left(a-2\right)=a^2-2a\)

Chúc bạn học tốt ! hehe

a: \(=4\left|a-3\right|=4\left(a-3\right)=4a-12\)

b: \(=9\cdot\left|a-9\right|=9\left(9-a\right)=81-9a\)

c: \(a^3b^6\cdot\sqrt{\dfrac{3}{a^6b^4}}=a^3b^6\cdot\dfrac{\sqrt{3}}{-a^3b^2}=-b^4\sqrt{3}\)

d: \(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a-b}\)

\(=\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

a) \(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\)

\(=3\sqrt{3}\cdot4\sqrt{3}\cdot\left|1-a\right|\)

\(=36\cdot\left(a-1\right)=36a-36\)

b) \(\dfrac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}\)

\(=\dfrac{1}{a-b}\cdot\left(a-b\right)\cdot a^2\)

\(=a^2\)

10 tháng 10 2018

Bạn làm đc bài này chưa chỉ mình với

a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)

b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)

\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)

\(=19ab\sqrt{ab}\)

c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)

\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)

\(=\sqrt{ab}\)

d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)

\(=-4\sqrt{5a}+9\sqrt{a}\)

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

13 tháng 10 2020

b, x-y+\(\sqrt{xy^2}\)-y\(^3\) =(x-y)+(\(\sqrt{xy^2}\)-\(\sqrt[3]{y^3}\)). =(\(\sqrt{x}\)-\(\sqrt{y}\))(\(\sqrt{x}\)+\(\sqrt{y}\))+\(\sqrt{y^2}\)(\(\sqrt{ }x\)-\(\sqrt{y}\)). =(\(\sqrt{x}\)-\(\sqrt{y}\))(\(\sqrt{x}\)+\(\sqrt{y}\)+\(\sqrt{y^2}\)). =(\(\sqrt{x}\)-\(\sqrt{y}\))(\(\sqrt{x}\)+\(\sqrt{y}\)+y) (vì y>0).

13 tháng 10 2020

a, \(\sqrt{a^3}\)-\(\sqrt{b^3}\)+\(\sqrt{a^2b}\)-\(\sqrt{ab^2}\)

=(\(\sqrt{a^3}\)-\(\sqrt{b^3}\))+(\(\sqrt{a^2b}\)-\(\sqrt{ab^2}\)). =(\(\sqrt{a}\)-\(\sqrt{b}\))(a+\(\sqrt{ab}\)+b)+\(\sqrt{ab}\)(\(\sqrt{a}\)-\(\sqrt{b}\)). =(\(\sqrt{a}\)-\(\sqrt{b}\))(a+\(\sqrt{ab}\)+b+\(\sqrt{ab}\)). =(\(\sqrt{a}\)-\(\sqrt{b}\))(a+2\(\sqrt{ab}\)+b). =(\(\sqrt{a}\)-\(\sqrt{b}\))(\(\sqrt{a}\)+\(\sqrt{b}\))\(^2\) =(a-b)(\(\sqrt{a}\)+\(\sqrt{b}\))