K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

a)\(n^4+4\)

\(=\left(n^4-2n^3+2n^2\right)+\left(2n^3-4n^2+4n\right)+\left(2n^2-4n+4\right)\)

\(=n^2\left(n^2-2n+2\right)+2n\left(n^2-2n+2\right)+2\left(n^2-2n+2\right)\)

\(=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

2 tháng 8 2019

Làm nốt

Ta có:\(A=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

Để A là số nguyên tố nên 1 trong 2 thừa số phải bằng 1 và số còn lại phải là số nguyên tố

Do \(n^2-2n+2< n^2+2n+2\)nên \(n^2-2n+2=1\)

\(\Leftrightarrow n^2-2n+1=0\)

\(\Leftrightarrow\left(n-1\right)^2=0\)

\(\Leftrightarrow n=1\)

Thay n=1 vào \(n^2+2n+2\) ta được \(n^2+2n+2=5\) là số nguyên tố

Vậy n=1

1,\(P=n^4-4-\left(n^2-2\right)\left(5n-9\right)\)

\(P=\left(n^2+2\right)\left(n^2-2\right)-\left(n^2-2\right)\left(5n-9\right)\)

\(P=\left(n^2-2\right)\left(n^2+2-5n+9\right)\)

\(P=\left(n^2-2\right)\left(n^2-5n+7\right)\)

Vậy......

10 tháng 9 2019

Chịu

Lên

Lazy

Hoặc

H.com

Mà 

Xem

18 tháng 11 2021

\(1,\\ b,=\left(x-6\right)\left(x+6\right)\\ 3,\\ x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

4 tháng 11 2019

Điều kiện xác định của phân thức: n ≠ 2

Ta có:

Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

Vậy để N nguyên thì Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nguyên ⇒ n – 2 là ước của 5;  Ư ( 5 ) = - 1 ; 1 ; - 5 ; 5

n - 2= -1 ⇒ n =1;

n – 2 = 1 ⇒ n =3;

n – 2 = -5 ⇒ n = - 3;

n – 2 = 5 ⇒ n = 7;

vì n ∈ N nên n = 1; n = 3; n = 7

Vậy với n ∈ { 1; 3; 7} thì Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 có giá trị là số nguyên

15 tháng 1 2021

x đầu ở đa thức A là x^3 chăng?

a/ \(A=x^3-5x^2+8x-4\)

\(=\left(x^3-x^2\right)+\left(-4x^2+4\right)+\left(8x-8\right)\)

\(=x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)+8\)

\(=\left(x-1\right)\left(x^2-4x-4\right)=\left(x-1\right)\left(x-2\right)^2\)

b/ \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)

\(=\dfrac{x^5}{30}-\dfrac{5x^3}{30}+\dfrac{4x}{30}\)

\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)

\(=\dfrac{x\left(x^4-x^2-4x^2+4\right)}{30}\)

\(=\dfrac{x\left(x+2\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)}{30}\)