Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+..............+\dfrac{1}{98.99.100}\)
\(S=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+................+\dfrac{2}{98.99.100}\right)\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)
\(S=\dfrac{1}{2}.\dfrac{4949}{9900}\)
\(S=\dfrac{4949}{19800}\)
~ Chúc bn học tốt ~
A= \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{4.5.6}+....+\dfrac{1}{37.38.39}\)
A=\(\dfrac{1}{1}-\dfrac{1}{39}\)
A=\(\dfrac{38}{39}\)
còn lại tự làm do mình có việc chút
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right).x=\dfrac{23}{45}\)
\(\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)\right].x=\dfrac{23}{45}\)\(\left[\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)\right].x=\dfrac{23}{45}\)
\(\left(\dfrac{1}{2}.\dfrac{22}{45}\right).x=\dfrac{23}{45}\)
\(\dfrac{11}{45}.x=\dfrac{23}{45}\)
\(x=\dfrac{23}{45}:\dfrac{11}{45}\)
\(x=\dfrac{23}{11}\)
\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\)
\(S=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)
\(S=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)
\(S=\dfrac{1}{2}-\dfrac{1}{90}=\dfrac{44}{90}\)
Ta có:
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{8.9.10}\right)x\) \(=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)x\) \(=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{11}{45}.x=\dfrac{23}{45}\Leftrightarrow x=\dfrac{23}{45}\div\dfrac{11}{45}=\dfrac{23}{11}\)
Vậy \(x=\dfrac{23}{11}\)
\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{2009.2010.2011}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)
\(=\dfrac{1}{2}-\dfrac{1}{4042110}< \dfrac{1}{2}\)
\(\Rightarrow\) \(S< P\)
Vậy \(S< P\)
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{2014.2015.2016}\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2015.2016}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2015.2016}\right)\)
\(A=\dfrac{1}{4}-\dfrac{1}{2.2015.2016}< \dfrac{1}{4}\)
\(=>A< \dfrac{1}{4}\)
Chúc bn học tốt
\(2S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{23+24+25}=\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+...+\left(\dfrac{1}{23.24}-\dfrac{1}{24.25}\right)\)\(=\dfrac{1}{1.2}-\dfrac{1}{24.25}=\dfrac{299}{600}\)
Vậy \(S=\dfrac{299}{600}\div2=\dfrac{299}{1200}\)
phép đầu nhân mà xuống dưới lại thành cộng
mà phải áp dụng thêm nhận xét chứ nhỉ