Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:Không áp dụng tính phân phối:
Cách 2: Áp dụng tính chất phân phối: A( B+ C)= AB + AC
Cách 1 \(\dfrac{x-1}{x}.\left(x^2+x+1+\dfrac{x^3}{x-1}\right)\\ =\dfrac{x-1}{x}.\left(\dfrac{\left(x-1\right)(x^2+x+1)+x^3}{x-1}\right)\\ =\dfrac{x-1}{x}.\dfrac{2x^3-1}{x-1}=\dfrac{2x^3-1}{x}\)
Cách 2 \(\dfrac{x-1}{x}.\left(x^2+x+1+\dfrac{x^3}{x-1}\right)\\ =\dfrac{x-1}{x}.\left(x^2+x+1\right)+\dfrac{x-1}{x}.\dfrac{x^3}{x-1}\\ =\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x}+x^2\\ =\dfrac{x^3-1}{x}+x^2=\dfrac{2x^3-1}{x}\)
\(\begin{array}{l}a)\dfrac{{{x^2} - 49}}{{{x^2} + 5}}.\left( {\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{{x^2} + 5}}{{x + 7}}} \right)\\ = \dfrac{{\left( {x - 7} \right)\left( {x + 7} \right)}}{{{x^2} + 5}}.\dfrac{{{x^2} + 5}}{{x - 7}} - \dfrac{{\left( {x - 7} \right)\left( {x + 7} \right)}}{{{x^2} + 5}}.\dfrac{{{x^2} + 5}}{{x + 7}}\\ = x + 7 - \left( {x - 7} \right) = 14\end{array}\)
\(\begin{array}{l}b)\dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2{\rm{x}} - 25}}{{x + 1945}}\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\left( {\dfrac{{2000 - x}}{{x + 1945}} + \dfrac{{2{\rm{x}} - 25}}{{x + 1945}}} \right)\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{2000 - x + 2{\rm{x}} - 25}}{{x + 1945}}\\ = \dfrac{{19{\rm{x}} + 8}}{{x + 1975}}.\dfrac{{x + 1975}}{{x + 1945}} = \dfrac{{19{\rm{x}} + 8}}{{x + 1945}}\end{array}\)
a: \(=\dfrac{x^3-1}{x+2}\cdot\dfrac{x^2+x+1-x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x+2}{x+2}=1\)
b: \(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\left(\dfrac{x+1-2x+2}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x+2}\right)\)
\(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\left(\dfrac{-\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x+2}\right)\)
\(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\dfrac{-\left(x^2-x-6\right)+x^2-1}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{-x^2+x+6+x^2-1}{2\left(x+5\right)}=\dfrac{x+5}{2\left(x+5\right)}=\dfrac{1}{2}\)
\(\frac{2x}{x^2+4x+4}+\frac{x+1}{x+2}+\frac{2-x}{x^2+4x+4}\)
\(=\frac{2x}{\left(x+2\right)^2}+\frac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)^2}+\frac{2-x}{\left(x+2\right)^2}\)
\(=\frac{2x+x^2+3x+2+2-x}{\left(x+2\right)^2}\)
\(=\frac{x^2+4x+4}{\left(x+2\right)^2}\)
\(=\frac{\left(x+2\right)^2}{\left(x+2\right)^2}\)
\(=1\)