K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng quy tắc khai phương một tích

1: Ta có: \(\sqrt{\frac{1}{5}}\cdot\sqrt{\frac{1}{20}}\cdot3\cdot7\)

\(=\sqrt{\frac{1}{5}}\cdot\sqrt{\frac{1}{20}}\cdot\sqrt{9}\cdot\sqrt{49}\)

\(=\sqrt{\frac{1}{5}\cdot\frac{1}{20}\cdot9\cdot49}\)

\(=\sqrt{\frac{441}{100}}=\frac{\sqrt{441}}{\sqrt{100}}=\frac{21}{10}\)

2: Ta có: \(\sqrt{0,001\cdot360\cdot3^2\cdot\left(-3\right)^2}\)

\(=\sqrt{0,001}\cdot\sqrt{360}\cdot\sqrt{3^{^2}}\cdot\sqrt{\left(-3\right)^2}\)

\(=\sqrt{\frac{1}{100}}\cdot\sqrt{\frac{1}{10}}\cdot\sqrt{6^2}\cdot\sqrt{10}\cdot3\cdot3\)

\(=\frac{1}{10}\cdot6\cdot9\cdot\sqrt{\frac{1}{10}\cdot10}=\frac{54}{10}\cdot1=\frac{27}{5}\)

Áp dụng quy tắc nhân căn thức bậc hai

1: Ta có: \(2\sqrt{2}\left(4\sqrt{8}-\sqrt{32}\right)\)

\(=2\sqrt{2}\cdot4\sqrt{8}-2\sqrt{2}\cdot\sqrt{32}\)

\(=8\cdot\sqrt{16}-2\cdot\sqrt{64}\)

\(=8\cdot4-2\cdot8\)

=32-16=16

15 tháng 7 2019

\(\frac{3\sqrt{128}}{\sqrt{2}}=\frac{\sqrt{9.128}}{\sqrt{2}}=\sqrt{\frac{1152}{2}}=\sqrt{576}=24\)

31 tháng 3 2017

a) ĐS: 2.4.

b) ĐS: 28.

c) HD: Đổi 12,1.360 thành 121.36. ĐS: 66

d) ĐS: 18.

20 tháng 6 2017

a) \(\sqrt{0,09.64}\)

\(=\sqrt{0,09}.\sqrt{64}\)

\(=0,3.8=2,4\)

b) \(\sqrt{2^4.\left(-7\right)^2}\)

\(=\sqrt{2^4}.\sqrt{\left(-7\right)^2}\)

\(=2^2.7=4.7=28\)

c) \(\sqrt{12,1.360}\)

\(=\sqrt{121.36}\)

\(=\sqrt{121}.\sqrt{36}\)

\(=11.6=66\)

d) \(\sqrt{2^2.3^4}\)

\(=\sqrt{2^2}.\sqrt{3^4}\)

\(=2.3^2=2.9=18\)

18 tháng 7 2016

3/13;5/12;5/4;13/9

28 tháng 8 2015

a) = \(\sqrt{10.40}=\sqrt{400}=\sqrt{20^2}=20\)

b) \(=\sqrt{5.45}=\sqrt{5^2.3^2}=\sqrt{15^2}=15\)

11 tháng 8 2016

a) \(\sqrt{0,09.64}=\sqrt{\left(0,3\right)^2.8^2}=0,3.8=2,4\)

b) \(\sqrt{2^4.\left(-7\right)^2}=\sqrt{\left(2^2\right)^2.\left(-7\right)^2}=2^2.\left|-7\right|=7.4=28\)

c) \(\sqrt{12,1.360}=\sqrt{12,1.10.36}=\sqrt{121.36}=\sqrt{11^2.6^2}=11.6=66\)

d) \(\sqrt{2^2.3^4}=\sqrt{2^2.\left(3^2\right)^2}=2.3^2=9.2=18\)

11 tháng 8 2016

a) \(\sqrt{0,09\cdot64}=\sqrt{0,09}\cdot\sqrt{64}=0,3\cdot8=2,4\)

b) \(\sqrt{2^4\cdot\left(-7\right)^2}=\sqrt{2^4}\cdot\sqrt{\left(-7\right)^2}=2^2\cdot7=4\cdot7=28\)

c) \(\sqrt{12,1\cdot360}=\sqrt{12,1\cdot10\cdot36}=\sqrt{121\cdot36}=\sqrt{121}\cdot\sqrt{36}=11\cdot6=66\)

d) \(\sqrt{2^2\cdot3^4}=\sqrt{2^2}\cdot\sqrt{3^4}=2\cdot3^2=2\cdot9=18\)

14 tháng 8 2016

a)\(\sqrt{10}\cdot\sqrt{40}=\sqrt{10\cdot40}=\sqrt{400}=20\)

b) \(\sqrt{2}\cdot\sqrt{162}=\sqrt{2\cdot162}=\sqrt{2\cdot2\cdot81}=\sqrt{4}\cdot\sqrt{81}=2\cdot9=18\)

28 tháng 11 2019

chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)

28 tháng 11 2019

a, Ta có

\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)

mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, áp dụng bđt ta có

\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)

\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)

\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..

\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)

\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)