Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)=\left(2x+3y\right)^2:\left(2x+3y\right)=2x+3y\)
d: \(\left(x^2+6xy+9y^2\right):\left(x+3y\right)=\left(x+3y\right)^2:\left(x+3y\right)=x+3y\)
e: \(\dfrac{64y^3-27}{4y-3}=\dfrac{\left(4y-3\right)\left(16y^2+12y+9\right)}{4y-3}=16y^2+12y+9\)
a, \(4x^2+12xy+9y^2=\left(2x+3y\right)^2\)
\(\Rightarrow\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)\)
\(=\left(2x+3y\right)^2:\left(2x+3y\right)\\ =2x+3y\)
b,\(x^2+6xy+9y^2=\left(x+3y\right)^2\)
\(\Rightarrow\left(x^2+6xy+9y^2\right):\left(x+3y\right)\\ =\left(x+3y\right)^2:\left(x+3y\right)\\ =x+3y\)
c, \(64y^3-27=\left(4y-3\right)\left(16y^2+12y+9\right)\)
\(\Rightarrow\left(64x^3-27\right):\left(4y-3\right)\\ =\left[\left(4y-3\right)\left(16x^2+12x+9\right)\right]:\left(4y-3\right)\\ =16x^2+12x+9\)
\(\dfrac{2x-2xy-3+3y}{1-3y+3y^2-y^3}=\dfrac{2x\left(1-y\right)-3\left(1-y\right)}{\left(1-y\right)^3}\)
\(=\dfrac{\left(2x-3\right)\left(1-y\right)}{\left(1-y\right)^3}=\dfrac{2x-3}{\left(1-y\right)^2}\)
a) \(\left(2x^2-1\right)^2=\left(2x^2\right)^2-2.2x^2.1+1^2\)
\(=4x^4-4x^2+1\).
b) \(\left(\frac{1}{2}x+3y^2\right)^2=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.3y^2+\left(3y^2\right)^2\)
\(=\frac{1}{4}x^2+3y^2x+9y^4\)
Chúc bn hc tốt!
`8x^3 - 12x^{2} y + 6xy^2 - y^3 + 12x^2 - 12xy + 3y^2 + 11`
`=(8x^3 - 12x^{2}y + 6xy^{2} - y^{3}) + 3(4x^2 - 4xy + y^2) + 11`
`=(2x-y)^{3} + 3(2x-y)^2 + 11`
Thay `2x-y=9` vào `:`
`9^3 + 3 . 9^2 + 11`
`=729 + 243 + 11`
`=983`
A=8x^3-12x^2y+6xy^2-y^3+12x^2-12xy+3y^2+11
=(2x-y)^3+4(2x-y)^2+11
Khi 2x-y=9 thì A=9^3+4*9^2+11
=1064
\(a,\left(3x+5\right)^2=9x^2+30x+25\)
\(b,\left(2x-1\right)^3=8x^3-12x^2+6x-1\)
\(c,\left(3y+2x\right)\left(2x-3y\right)=4x^2-9y^2\)
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
`(3y+2x)(2x-3y)`
`=(2x)^2-(3y)^2`
`=4x^2-9y^2`
Đáp Án:4x2-9y2