Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ đề bài phải là tìm giá trị lớn nhất. Vì giả sử : \(P\left(x\right)=\sqrt{x-2}+\sqrt{4-x}\) , ta cần tìm x sao cho P(x) = 0. Không thể vì P(x) vô nghiệm.
TÌM GIÁ TRỊ LỚN NHẤT :
Áp dụng bất đẳng thức Bunhiacopxki : \(P^2=\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)\)
\(\Rightarrow P^2\le4\Rightarrow P\le2\) . Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}2\le x\le4\\\sqrt{x-2}=\sqrt{4-x}\end{cases}\)\(\Leftrightarrow x=3\)
Vậy Max P = 2 <=> x = 3
Đk:\(3\le x\le7\)
Có \(\left(\sqrt{x-3}+\sqrt{7-x}\right)^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4;\forall3\le x\le7\)
\(\Leftrightarrow\sqrt{x-3}+\sqrt{7-x}\ge2\) (I)
Có \(6x-7-x^2=2-\left(x^2-6x+9\right)=2-\left(x-3\right)^2\le2\) (II)
Từ (I) và (II) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{\left(x-3\right)\left(7-x\right)}=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow x=3\) (tm)
Vậy...
ĐKXĐ: \(3\le x\le7\)
Ta có:
\(VT=\sqrt{x-3}+\sqrt{7-x}\ge\sqrt{x-3+7-x}=2\)
\(VP=2-\left(x-3\right)^2\le2\)
\(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)=0\\\left(x-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)
2:
a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)
=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)
A=2 thì a^2+2=1
=>a^2=-1(loại)
=>A>2 với mọi a
b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)
=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)
=>(căn a+căn b)(a-2*căn ab+b)>=0
=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)
1
ĐK: `x>1`
PT trở thành:
\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)
Vậy PT vô nghiệm.
b
ĐK: \(x\ge2\)
Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))
=> \(x=t^2+2\)
PT trở thành: \(t^2+2-5t+2=0\)
\(\Leftrightarrow t^2-5t+4=0\)
nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)
\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)
\(x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)(ĐK :\(x\ge1\))
\(\Leftrightarrow x-\sqrt{1-\frac{1}{x}}=\sqrt{x-\frac{1}{x}}\)
\(\Leftrightarrow x^2+1-\frac{1}{x}-2x\sqrt{1-\frac{1}{x}}=x-\frac{1}{x}\)
\(\Leftrightarrow x^2-x+1-2x\sqrt{1-\frac{1}{x}}=0\)
\(\Leftrightarrow\left(x^2-x\right)-2\sqrt{x^2-x}+1=0\)
\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)
\(\Rightarrow\sqrt{x^2-x}=1\Leftrightarrow x^2-x-1=0\)
\(\Rightarrow x=\frac{1+\sqrt{5}}{2}\)(nhận) hoặc \(x=\frac{1-\sqrt{5}}{2}\)(loại)
Vậy tập nghiệm của phương trình : \(S=\left\{\frac{1+\sqrt{5}}{2}\right\}\)
Về hướng giải bài bằng bất đẳng thức Cosi mình chưa nghĩa ra :))