Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu $p_1,p_2,p_3,p_4$ là 4 số nguyên tố khác nhau thì loại TH $\overline{a_1a_2a_3}=121; 169$.
Lời giải:
Theo đề bài ta có:
\(A=\overline{a_1a_2a_3}.10^6+\overline{b_1b_2b_3}.10^3+\overline{a_1a_2a_3}=\overline{a_1a_2a_3}.10^6+2.\overline{a_1a_2a_3}.10^3+\overline{a_1a_2a_3}\)
\(=\overline{a_1a_2a_3}(10^6+2.10^3+1)=\overline{a_1a_2a_3}(10^3+1)^2\)
\(=\overline{a_1a_2a_3}[(10+1)(10^2-10+1)]^2=\overline{a_1a_2a_3}.11^2.91^2=\overline{a_1a_2a_3}.11^2.7^2.13^2\)
Theo dạng của $A$ ta thấy $\overline{a_1a_2a_3}$ là bình phương của 1 số nguyên tố.
Đặt $\overline{a_1a_2a_3}=p^2$. Dễ thấy $a_1<5$ vì nếu $a_1\geq 5$ thì $\overline{b_1b_2b_3}=2\overline{a_1a_2a_3}\geq 1000$ (vô lý). Khi đó:
$100\leq \overline{a_1a_2a_3}=p^2\leq 499$
$\Rightarrow 10\leq p\leq 22$. Mà $p$ nguyên tố nên $p=11; 13;17;19$
Khi đó thay vào tìm được $\overline{a_1a_2a_3}=121; 169; 289; 361$
$\Rightarrow \overline{b_1b_2b_3}=242; 338; 578; 722$ (tương ứng)
Khi đó bạn ghép lại để viết ra số A thôi.
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.
Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5,
b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3
Tham khảo lời giải tại đây:
Câu hỏi của Đõ Phương Thảo - Toán lớp 8 | Học trực tuyến