Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\int f\left(x\right)dx=F\left(x\right)\Rightarrow\int\limits^{17}_1f\left(x\right)dx=F\left(17\right)-F\left(1\right)\)
Từ giả thiết:
\(2x.f\left(x^2+1\right)+\dfrac{f\left(\sqrt{x}\right)}{2\sqrt{x}}=2lnx\)
Lấy nguyên hàm 2 vế:
\(F\left(x^2+1\right)+F\left(\sqrt{x}\right)=2xlnx-2x+C\)
Thay \(x=4\):
\(F\left(17\right)+F\left(2\right)=16ln2-8+C\) (1)
Thay \(x=1\):
\(F\left(2\right)+F\left(1\right)=-2+C\) (2)
Trừ vế cho vế (1) cho (2):
\(F\left(17\right)-F\left(1\right)=16ln2-6\)
Vậy \(\int\limits^{17}_1f\left(x\right)dx=16ln2-6\)
Lời giải:
\(\log_2^2x+\log_2(\frac{x}{4})=0\)
$\Leftrightarrow \log_2^2x+\log_2x+\log_2(\frac{1}{4})=0$
$\Leftrightarrow \log_2^2x+\log_2x-2=0$
$\Leftrightarrow (\log_2x-1)(\log_2x+2)=0$
\Leftrightarrow \log_2x=1$ hoặc $\log_2x=-2$
$\Leftrightarrow x=2$ hoặc $x=\frac{1}{4}$
Tích các nghiệm: $2.\frac{1}{4}=\frac{1}{2}$
Đáp án D
16.
Số cạnh của 1 lăng trụ luôn chia hết cho 3 nên A
17.
Chóp có đáy là đa giác n cạnh sẽ có n mặt bên (mỗi cạnh đáy và đỉnh sẽ tạo ra 1 mặt bên tương ứng)
Do đó chóp có n+1 mặt (n mặt bên và 1 mặt đáy)
Chóp có n+1 đỉnh (đáy n cạnh nên có n đỉnh, cộng 1 đỉnh của chóp là n+1)
Do đó số mặt bằng số đỉnh
18. D
19. A
20. C
Gọi V là thể tích khi quay phần giới hạn bởi \(y=\dfrac{1}{x}\) ; x=1, y=0; Ox quanh Ox
\(\Rightarrow V=V_1+V_2\)
\(V=\pi\int\limits^5_1\dfrac{1}{x^2}dx=\dfrac{4\pi}{5}\)
\(V_1=\pi\int\limits^k_1\dfrac{1}{x^2}dx=-\dfrac{\pi}{x}|^k_1=\pi-\dfrac{\pi}{k}\)
\(\Rightarrow V_2=V-V_1=\dfrac{4\pi}{5}-\pi+\dfrac{\pi}{k}=\dfrac{\pi}{k}-\dfrac{\pi}{5}\)
\(\Rightarrow\pi-\dfrac{\pi}{k}=2\left(\dfrac{\pi}{k}-\dfrac{\pi}{5}\right)\)
\(\Rightarrow k=\dfrac{15}{7}\)
làm tới câu 9 chắc cậu cũng có kiến thức nên tôi nêu ý tưởng
thấy giao với trục ox => tung độ =0
y=0
với mọi m ta luôn có nghiệm x=1 cho y =0
vậy có 1 nghệm x1 rồi đấy
dùng hoocne gì đó tìm pt còn lại là :
\(y=\dfrac{1}{3}x^2+\left(\dfrac{1}{3}-m\right)x-m-\dfrac{2}{3}\)
còn 2 nghiện x2 và x3 trong pt này
h ta cần : \(x_2^2+x_3^2>14\)
<=>\(\left(x_2+x_3\right)^2-2x_2x_3>14\)
rồi dùng viet thế vào rồi tìm m