K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

với \(k\in N^{\circledast}\) nha

bài làm :

với \(k=0\) thì ta thấy bài toán thỏa mãn

giả sử \(k=n\) thì ta có : \(2^{2k+1}+1=2^{2n+1}+1⋮3\)

khi đó nếu ta có \(k=n+1\)

\(\Rightarrow2^{2k+1}+1=2^{2n+3}+1=4.2^{2n+1}+1=2^{2n+1}+1+3.2^{2n+1}⋮3\)

\(\Rightarrow\) (đpcm)

19 tháng 8 2018

Ta có \(2\equiv-1\left(mod3\right)\)

mà 2k+1 là số lẻ \(\Rightarrow2^{2k+1}\equiv-1\left(mod3\right)\Rightarrow2^{2k+1}+1\equiv0\left(mod3\right)\Rightarrow2^{2k+1}+1⋮3\left(ĐPCM\right)\)

28 tháng 4 2016

a) Để A có giá trị nguyên => n - 5 chia hết  n + 1

=> n + 1 - 6 chia hết n + 1

Vì n + 1 chia hết n + 1

=> 6 chia hết n + 1

=> n + 1 thuộc Ư(6) = {........}

=> .......................Còn lại bạn tự làm nha!

b) Giả sử tử và mẫu cùng chia hết cho số nguyên tố d

=> n - 5 chia hết d và n + 1 chia hết d

=> ( n+1) - ( n - 5) chia hết d

=> 6 chia hết d => d = 2 ; 3 ( vì d là số nguyên tố)

=> Có 2 trường hợp .....tự làm nha

28 tháng 4 2016

a,n-5/n-1=((n-1)-4)/n-1

  =1-(4/n-1)

 => n-1 thuộc  Ư(4) =>n-1 =1, -1, 2, -2, 4, -4

  =>.......

29 tháng 11 2017

a, Xét : n^5-n = n.(n^4-1)=n.(n^2-1).(n^2+1) = n.(n-1).(n+1).(n^2-4+5) = n.(n-1).(n+1).(n-2).(n+2) + 5.(n-1).n(n+1)

Ta thấy n-2;n-1;n-n+1;n+2 là 5 số nguyên liên tiếp nên có  1 số chia hết cho 2 và 1 số chia hết cho 5

=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 2.5 = 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )

Lại có : n-1 và n là 2 số nguyên liên tiếp nên có 1 số chia hết cho 2 => 5.(n-1).n.(n+1) chia hết cho 10

=> n^5-n chia hết cho 10 => n^5-n có tận cùng là 0

=> n^5 và n có chữ số tận cùng bằng nhau

k mk nha

23 tháng 9 2020

Có :

\(A=n^3-7n\)

\(=\left(n^3-n\right)-6n\)

\(=n.\left(n^2-1\right)-6n\)

\(=\left(n+1\right)n\left(n-1\right)-6n⋮6\)

30 tháng 9 2020

\(A=n^3-7n\)

\(=n^3-n-6n\)

\(=\left(n^3-n\right)-6n\)

\(=n\left(n^2-1\right)-6n\)

\(=\left(n+1\right)n\left(n-1\right)-6n⋮6\)

\(\Rightarrow A⋮6\left(dpcm\right)\)