Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(x^4=16\)
\(\Rightarrow x=2\) hoặc \(x=-2\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 2:
\(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
Vậy \(x=-9\)
Câu 4:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=-7\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
+) \(\frac{x}{2}=-1\Rightarrow x=-2\)
+) \(\frac{y}{-5}=-1\Rightarrow y=5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-2;5\right)\)
Câu 5:
Giải:
Đổi 10km = 10000m
Gọi 10000m dây đồng nặng x ( kg )
Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:
\(\frac{5}{43}=\frac{10000}{x}\)
\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)
Vậy 1km dây đồng nặng 86000 kg
Câu 6:
Giải:
Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(c+b-a=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy số học sinh giỏi là 60 học sinh
số học sinh khá là 90 học sinh
số học sinh trung bình là 150 học sinh
Câu 7:
a) Ta có: \(y=f\left(x\right)=x^2-8\)
\(f\left(3\right)=3^2-8=9-8=1\)
\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)
b) Khi y = 17
\(\Rightarrow17=x^2-8\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{5;-5\right\}\)
Ta gọi số học sinh của ba khối lớp 6, 7, 8 là a, b, c
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+c-b=117
\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+c-b}{2+4-3}=\frac{117}{3}=39\)
Với:
\(\frac{a}{2}=39\Rightarrow a=78\)
\(\frac{b}{3}=39\Rightarrow b=117\)
\(\frac{c}{4}=39\Rightarrow c=156\)
Tổng số học sinh giỏi của cả 3 lớp là:
78+117+156=351 ( học sinh giỏi )
Vậy tổng số học sinh giỏi của cả 3 lớp là 351 em.
41.Với hai góc kề bù ta có định lý như sau
Hai tia phân giác của hai góc kề bù tạo thành một góc vuông.
a) Hãy vẽ hai góc \(\widehat{xOy}\)và \(\widehat{yOx'}\) kề bù tia phân giác Ot của góc xOy, tia phân giác Ot' của góc yOx' và gọi số đo của góc xOy là \(m^o\)
b)Hãy viết giả thuyết và kết luận của định lý.
c)Hãy điền vào chỗ trống và sắp xếp bốn câu sau đây một cách hợp lý để chứng minh định lý trên:
1)\(\widehat{tOy}=\frac{1}{2}m^o\) vì ......
2)\(\widehat{\widehat{t'Oy}=\frac{1}{2}\left(180^0-m^0\right)}\) vì .....
3)\(\widehat{tOt'=90^o}\) vì .....
4)\(\widehat{x'Oy=180^o}\) vì ....
42.Điền vào chỗ trống để chứng minh bài toán sau:
Gọi DI là tia phân giác của góc MND.Gọi EDK là đỉnh của góc IDM.Chứng minh rằng \(\widehat{EDI}=\widehat{IDN}\)
Giai thich | |
Gọi số học sinh giỏi của 3 khối lớp 6,7,8 lần lượt là:a,b,c(\(a,b,c\in N\)*)
Ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và c+a-b=117
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+c-b}{2+4-3}=\frac{117}{3}=39\)
\(\Rightarrow a=39\cdot2=78,b=39\cdot3=117,c=156\)
Tổng số học sinh của cả 3 khối lớp là:117+78+156=351(học sinh)
Vậy tổng số học sinh giỏi của 3 khối lớp là:351 học sinh
Bài 9:
a: \(2^{195}=8^{65}\)
\(3^{130}=9^{65}\)
mà 8<9
nên \(2^{195}< 3^{130}\)
Giair bài nào z bn ???
mik 10/4 mới thi. Bạn đưa 3 bài ấy lên đi