Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ước chung nếu có của cả a và b
==> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 )
==> ( b^2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1 (đpcm)
CÂU1 ;(X+1) + (X +2) ...........( X +100)=5750
X .100 + (1+2+3+.......100)=5750
bạn tự làm phần còn lại nhé
1:
Ta có: \(D=\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+\dfrac{3}{9\cdot11}+...+\dfrac{3}{53\cdot55}\)
\(=\dfrac{3}{2}\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{53\cdot55}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{55}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{11}{55}-\dfrac{1}{55}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{2}{11}=\dfrac{3}{11}\)
2) Để A là số nguyên dương thì
\(\left\{{}\begin{matrix}x+2⋮x-5\\x-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5+7⋮x-5\\x>5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7⋮x-5\\x>5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5\inƯ\left(7\right)\\x>5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-5\in\left\{1;-1;7;-7\right\}\\x>5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{6;4;12;-2\right\}\\x>5\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{6;12\right\}\)
1.A= 1.2.3+2.3.4+...+29.30.31+x=15
\(4A=1.2.3.4+2.3.4.\left(5-1\right)+...+29.30.31.\left(32-28\right)+4x=60\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+29.30.31.32-28.29.30.31+4x=60\)
Từ đó suy ra nha bạn
2.\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{2}{2\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\\ =1-\frac{2}{\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2009}\Rightarrow x+1=2009\Rightarrow x=2008\)
Helppppppppppppp