Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)
hay \(n\in\left\{0;-1;1\right\}\)
Lời giải:
$a+b+c=0$
$\Rightarrow a+b=-c$
$\Rightarrow (a+b)^2=(-c)^2$
$\Rightarrow a^2+b^2-c^2=-2ab$
$\Rightarrow \frac{ab}{a^2+b^2-c^2}=\frac{ab}{-2ab}=\frac{-1}{2}$
Tương tự với các phân thức còn lại suy ra:
$A=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}=\frac{-3}{2}$
b: Xét ΔBID có \(\widehat{DBI}=\widehat{DIB}\left(=\widehat{IBC}\right)\)
nên ΔBID cân tại D
Xét ΔEIC có \(\widehat{EIC}=\widehat{ECI}\left(=\widehat{ICB}\right)\)
nên ΔEIC cân tại E
c: Ta có: DE=DI+IE
mà DI=DB
và EC=IE
nên DE=DB+EC
\(\left(x^3-8\right):\left(x^2+2x+4\right)\\ =\left(x-2\right)\left(x^2+2x+4\right):\left(x^2+2x+4\right)\\ =x-2\)
bài 2
a)
\(2xy^2-4y\\ =2y\left(xy-2\right)\)
b)
\(x^2-6xy+9y^2\\ =\left(x-3y\right)^2\)
c)
\(x^2+x-y^2+y\\ =\left(x^2-y^2\right)+\left(x+y\right)\\ =\left(x-y\right)\left(x+y\right)+\left(x+y\right)\\ =\left(x+y\right)\left(x-y+1\right)\)
d)
\(x^2+4x+3\\ =x^2+3x+x+3\\ =x\left(x+3\right)+\left(x+3\right)\\ =\left(x+3\right)\left(x+1\right)\)
Bài 10:
e: \(\Leftrightarrow x\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Ta có: ΔABC∼ΔDEF
nên DE/AB=EF/BC=DF/AC
=>9/6=EF/10=DF/14
=>EF/10=DF/14=3/2
=>EF=15cm; DF=21cm
a, \(2x=5\Leftrightarrow x=\dfrac{5}{2}\)
b, \(2x-1=4x-8\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\)
c, \(3x+9-6=2x+4\Leftrightarrow x=1\)
d, \(\left[{}\begin{matrix}2x+1=0\\-3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
e, đk : x khác 0 ; 3
\(2x+8x-24=16\Leftrightarrow10x=40\Leftrightarrow x=4\left(tm\right)\)
1: Ta có: \(a^2+2ab+b^2-12a-12b+50\)
\(=\left(a+b\right)^2-12\left(a+b\right)+50\)
\(=2^2-12\cdot2+50\)
=54-24
=30
Em cần câu mấy ?
P/s: mỗi lần chỉ hoỉ 1 câu thôi nhé!