K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90 

28 tháng 8 2016

Có: \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{DBC}=\widehat{ECB}\) (BC là cạnh chung)

\(\Rightarrow\Delta DBC=\Delta ECB\)

\(\Rightarrow\) AE//AB = AD//AC

\(\Rightarrow\) ED//BC

Từ a) có: \(\widehat{EDB}=\widehat{DBC}\) (so le trong)

\(\widehat{DBC}=\widehat{EBD}\) (BD là tia phân giác)

\(\Rightarrow\widehat{EDB}=\widehat{DBC}=\widehat{EBD}\)

\(\Rightarrow\Delta BED\) cân tại E

\(\Rightarrow BE=ED\)

AI cắt ED tại J', ta cm J' ≡ J 
Từ tính chất tam giác đồng dạng ta có: 
EJ'/BI = AE/AB = ED/BC = ED/2BI 
=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J 
Vậy A,I,J thẳng hàng 
*OI cắt ED tại J" ta cm J" ≡ J 
hiễn nhiên ta có: 
OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC) 
mặt khác: 
^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh) 
=> tgiác J"DO đồng dạng với tgiác IBO 
=> J"D/IB = OD/OB = ED/BC = ED/ 2IB 
=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J 
Tóm lại A,I,O,J thẳng hàng 

19 tháng 6 2019

I O A B C D 1 1

a) Ta có: \(\widehat{B}=120^o,\widehat{A}=90^o\Rightarrow\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}=150^o\)

CO, DO là hai tia phân giác góc C và góc D

=> \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)=\frac{1}{2}.150^o=75^o\)

=> \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-75^o=105^o\)

b) 

Xét tam giác COD

Ta có: \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)

Vì: \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)

Mặt khác: Xét tứ giác ABCD ta có: \(\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}\)

=> \(\widehat{COD}=180^o-\frac{1}{2}\left(360^o-\widehat{A}-\widehat{B}\right)=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}\)

c) Tương tự ta cũng chứng minh dc:

\(\widehat{BIA}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}\)

=> \(\widehat{COD}+\widehat{BIA}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\right)=\frac{1}{2}.360^o=180^o\)

=>\(\widehat{FOE}+\widehat{EIF}=180^o\)

=> \(\widehat{OEI}+\widehat{IFO}=180^o\)

Vậy tứ giác EIF có các góc đối bù nhau!

Ta có BAD + ABC + BCD + CDA = 360 độ

ADC + BCD = 360 - 120 - 90 = 150 độ

=> BCO = OCD = 1/2 BCD

=> ADO = ODC = 1/2 ADC

=> ODC + OCD = 1/2 ODC + 1/2 OCD = ODC+OCD/2

=> ODC + OCD = 150 /2 =75 độ

Mà ODC + OCD +DOC = 180 độ

=> DOC = 180 - 75 = 105 độ

B) COD = 180 - (ODC + OCD) 

=> COD = 180 - 1/2ADC + 1/2 BCD

Mà ADC + BCD = 360 - ( BAD + ABC)

COD = 180 - [ 360 - 1/2(BAD + ABC )]

14 tháng 7 2016

Bài 1:

Giải: Vì AB // CD

    => A + D =180

    mà A = 3D => 3D + D = 180o

                        =>  4D = 180o

                        =>   D = 45o   => A = 135o

Ta có: AB // CD => B + C = 180o

        mà B - C = 30o  hay B = C + 30o

=> C + 30+ C = 180o

=>  2C = 150o  => C = 75o  => B = 105o

 

22 tháng 9 2016

Bài 1:

Vì AB // CD (gt)

\(\Rightarrow\)\(\widehat{A} + \widehat{D} = 180^0\) (kề bù)

mà \(\widehat{A} = 3 \widehat{D}\) (gt)

\(\Rightarrow\)\(\widehat{D} = 45^0\) và \(\widehat{A} = 135^0\)

Vì AB // CD (gt)

\(\Rightarrow\)\(\widehat{B} + \widehat{C} = 180^0\) (kề bù)

mà \(\widehat{B} - \widehat{C} = 30^0\) (gt)

\(\Rightarrow\)\(2 \widehat{B} = 210^0\)

\(\Rightarrow\)\(\widehat{B} = 105^0\)

\(\Rightarrow\)\(\widehat{C} = 75^0\)

Vậy.......