K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2015

ĐK x>=  0 

\(F=\frac{x+3\sqrt{x}}{x}=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x}=\frac{\sqrt{x}+3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)

Để F nguyên khi \(3\) chia hết cho \(\sqrt{x}\) 

=> \(\sqrt{x}\) thuộc ước dương của 3 là { 1 ; 3 } 

(+) \(\sqrt{x}=1\Rightarrow x=1\)

(+) \(\sqrt{x}=3\Rightarrow x=9\)

13 tháng 8 2020

Với \(x\ge-\frac{1}{2}\)

2f(x) = \(2\sqrt{\left(2x+1\right)\left(x+2\right)}+4\sqrt{x+3}-4x\)

\(=-\left(2x+1\right)+2\sqrt{\left(2x+1\right)\left(x+2\right)}-\left(x+2\right)-\left(x+3\right)+4\sqrt{x+3}-4+10\)

\(=-\left(\sqrt{2x+1}-\sqrt{x+2}\right)^2-\left(\sqrt{x+3}-2\right)^2+10\le10\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=x+2\\x+3=4\end{cases}}\Leftrightarrow x=1\)

=> min 2f(x) = 10 tại x = 1

=> min f(x) = 5 tại x = 1