Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 3*A = 3\(^2+3^3+....+3^{2016}+3^{2017}\Rightarrow2\cdot A=3^{2017}-3\Rightarrow A=\frac{3}{2}\)*(3\(^{2016}-1\))
TA CÓ : 3\(^{2016}\)CÓ CHỮ SỐ TẬN CÙNG LÀ 1 \(\Rightarrow3^{2016}-1\)CÓ TẬN CÙNG BẰNG O\(\Rightarrow A\)CÓ TẬN CÙNG LÀ 0.
LÍ DO VÌ 3\(^0\)CÓ TẬN CÚNG LÀ 1. 3\(^1\)CÓ TẬN CÙNG LÀ 1*3=3 . 3\(^2\)LÀ 3*3=9 LẤY 9 . 3\(^3\)LÀ 9*3=27 LẤY 7 . 3\(^4\)LÀ 7*3=21 LẤY 1 . THEO ĐÓ TA SUY RA 3\(^{2016}\)DƯ 1
a ) Nhân cả hai vế của A với 3 ta được :
3A = 3 ( 3 + 32 + 33 + ..... + 32015 + 32016 )
= 32 + 33 + 34 + ..... + 32016 + 32017 ( 1 )
Trừ cả hai vế của ( 1 ) cho A ta được :
3A - A = ( 32 + 33 + 34 + ..... + 32016 + 32017 ) - ( 3 + 32 + 33 + ..... + 32015 + 32016 )
2A = 32 + 33 + 34 + ..... + 32016 + 32017 - 3 - 32 - 33 - .....- 32015 - 32016
2A = 32017 - 3 => A = \(\frac{3\left(3^{2016}-1\right)}{2}\)
b ) Ta có : 32016 = ( 32 )1008 = 91008
Vì 92n có chữ số tận cùng là 1 => 91008 có chữ số tận cùng là 1
=> 32016 có chữ số tận cùng là 1
=> 32016 - 1 có chữ số tận cùng là 0
=> 3 ( 32016 - 1 ) có chữ số tận cùng là 0
=> \(\frac{3\left(3^{2016}-1\right)}{2}\) có chữ số tân cùng là 5
c ) chịu
ta có A = 3+3^2+......+ 3^2016
=> 3A = 3^2 + 3^3 +....+ 3^2017
=> 3A -A = (3^2 + 3^3 +...+ 3^2017)- ( 3+3^2+...+ 3^2016)
=> 2A = 3^ 2017 - 3
=> A = \(\frac{3^{2017}-3}{2}\)
Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}\)đều chia hết cho \(3\)\(\Rightarrow A⋮3\)
Nhưng chỉ có \(3\)không chia hết cho \(3^2\)\(\Rightarrow A\)không chia hết cho \(3^2\)
Ta có: \(A\)chia hết cho 3 nhưng không chia hết cho \(3^2\)
nên \(A\)không phải là số chính phương
a) \(A=3+3^2+3^3+.....+3^{2015}\)
\(\Rightarrow3A=3^2+3^3+3^4+......+3^{2016}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+......+3^{2016}\right)-\left(3+3^2+3^3+......+3^{2015}\right)\)
\(\Rightarrow2A=3^{2016}-3\)
\(\Rightarrow A=\frac{3^{2016}-3}{2}\)
b) Dựa vào câu a nha
A= 3 + 32 + 33 + ... + 32016
3A= 32 + 33 + ... + 32016 + 32017
3a-a= 32017 - 3
2a= 32017 - 3
a= (32017 - 3) : 2
a, 3A = 32 + 33 + 34 +...+ 32016 + 32017
3A - A = 2A = ( 32+ 33 + 34 +...+ 32016 + 32017) - (3+ 32 + 33 +...+ 32015 + 32016)
2A = 32+ 33 + 34 +...+ 32016 + 32017 - 3- 32 - 33 -...- 32015 - 32016
2A = 32017 - 3
2A = 3(32016 - 1)
A = 1,5 ( 32016 -1)
Câu 2a đánh thiếu đề rồi : I x+1I + I x+2I + I x+3 I = x
2c)
Ta có: \(25-y^2\le25\Rightarrow8\left(x-2012\right)^2\le25\)
\(\Rightarrow\left(x-2012\right)^2\le3\)
\(\Rightarrow\left[\begin{matrix}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x-2012=0\\\left[\begin{matrix}x-2012=1\\x-2012=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=2012\\\left[\begin{matrix}x=2013\\x=2011\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}y=5\\\left[\begin{matrix}y=\sqrt{17}\\y=\sqrt{17}\end{matrix}\right.\end{matrix}\right.\)(loại)
Vậy x=2012,y=5
BT1: 20152014 có tận cùng là 5
20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4
=> 20152014-20142015 có tận cùng là ...5-...4=...1
BT2: f(1)=a.1+b=1 (1)
f(2)=a.2+b=4 (2)
Trừ (2) cho (1) => a=3
Thay a=3 vào (1) => b=-2
ĐS: a=3; b=-2
a.Ta có:
\(5^3=125\)
\(5^5=3125\)
\(5^7=78125\)
....
\(5^{2n+1}=\left(...125\right)\)
\(\Rightarrow5^{2017}=5^{1008.2+1}=\left(...125\right)\)