K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:
Ta có:

$10\equiv -1\pmod {11}$

$\Rightarrow 10^{2022}\equiv (-1)^{2022}\equiv 1\pmod {11}$

$\Rightarrow A=10^{2022}-1\equiv 1-1\equiv 0\pmod {11}$

Vậy $A\vdots 11$

23 tháng 12 2023

ok

A= 10^2022-1

Ta có thể thấy 10^2022=100000000...........0000000000 

 10000000.......0000000000-1 thì lúc nnày tổng bằng

9999999999999999........................999999999999999999999

mà 99999999999999999999999....................9999999999999999999chia hết cho 11 nên tổng này chia hết cho 11

 

9 tháng 9 2023

 Có đó bạn. Nếu bạn lấy bất kì số \(n\) nào có dạng \(10k\pm3\) (tức là chia 10 dư 3 hoặc dư 7) thì \(n^{10}+1\) sẽ chia hết cho 10. Ví dụ:

 \(7=10.1-3\Rightarrow7^{10}+1=282475250⋮10\)

 

9 tháng 9 2023

không tồn tại số tự nhiên n nào để n10 + 1 chia hết cho 10.

14 tháng 1 2021

hỏi chút là 74n-1 hay là 74n-1 vậy 

5 tháng 10 2023

Đặt A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²²

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2²⁰²⁰ + 2²⁰²¹ + 2²⁰²²)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2²⁰²⁰.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2²⁰²⁰.7

= 7.(2 + 2⁴ + ... + 2²⁰²⁰) ⋮ 7

Vậy A ⋮ 7

8 tháng 12 2021

\(A=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\\ A=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(1+...+3^{99}\right)=13\left(1+...+3^{99}\right)⋮13\)

1 tháng 11 2021

Em xem lại đề nhé! Có xuất hiện dấu + không? Hay chỉ là dấu x

1 tháng 11 2021

À em gấp quá nên ghi nhầm + thành x

17 tháng 10 2016

ta thấy 1978 ko chia hết cho 11 

78 ko chia hết cho 11 suy ra a chia hết cho 11

2012 ko chia het cho 11

10 ko chia het cho 11

suy ra chắc chắn b chia hết cho 11 ( ĐPCM)

k nha

28 tháng 10 2016

\(1978a+2012b-78a-10b=1900a+2002\)

ma 2002b chia het cho 11

=>1900a chia het cho 11 nhung 1900 khong chia het cho 11

=>a chia het cho 11 (1)

ta co 78a+10b chia het cho 11 ma 78a chia het cho 11

=>10b chia het cho 11 ma 10 khong chia het cho 11

=>b chia het cho 11 (2)

tu (1) va (2) =>a+b chia het cho 11