K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

\(-3+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{3}}}}\)

\(=-3+\frac{1}{1+\frac{1}{3+\frac{3}{4}}}\)

\(=-3+\frac{1}{1+\frac{4}{15}}\)

\(=-3+\frac{15}{19}\)

\(=-\frac{42}{19}\)

25 tháng 2 2017

404154/2013

16 tháng 3 2018

CTv mà cũng đi hỏi ak :v

16 tháng 3 2018

Nguyễn Văn Anh Kiệt 

CTV thì vẫn đc hỏi!! Chỉ những thằng não ngắn mới nghĩ như vậy~~

ko lm đc thì ra chỗ khác cho ng` giỏi làm =))

25 tháng 10 2016

Alayna Ko biết :)

25 tháng 10 2016

A = \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)

=> 4A = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)

=> 3A = \(1-\frac{1}{4^{2012}}\)

=> A = \(\frac{1-\frac{1}{4^{2012}}}{3}\)

Vậy A \(< \frac{1}{3}\)

25 tháng 8 2019

\(\Leftrightarrow\left(\frac{3}{4}x-\frac{9}{16}\right)\left(\frac{1}{3}-\frac{3}{5}.\frac{1}{x}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{4}x-\frac{9}{16}=0\\\frac{1}{3}-\frac{3}{5}.\frac{1}{x}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{9}{5}\end{cases}}\)

Vậy \(x\in\left\{\frac{3}{4};\frac{9}{5}\right\}\)

16 tháng 12 2017

\(-\)\(\frac{1}{3.5}\)\(-\)\(\frac{1}{5.7}\)\(-\)\(\frac{1}{7.9}\)\(-\)..... \(-\)\(\frac{1}{53.55}\)\(-\)\(\frac{1}{55.57}\)

= 1 \(-\)\(\frac{1}{3.5}\)  + \(\frac{1}{5.7}\) + \(\frac{1}{7.9}\) + ..... + \(\frac{1}{53.55}\)  + \(\frac{1}{55.57}\)  )

= 1 \(-\)\(\frac{1}{3}\)\(-\)\(\frac{1}{5}\)\(\frac{1}{5}\)\(-\)\(\frac{1}{7}\)\(\frac{1}{7}\)\(-\)\(\frac{1}{9}\)+....+ \(\frac{1}{53}\)\(-\)\(\frac{1}{55}\)\(\frac{1}{55}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)

= 1 \(-\)\(\frac{1}{3}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)

= 1 \(-\) \(\frac{6}{19}\)\(\frac{1}{2}\)= 1 \(-\)\(\frac{3}{19}\)\(\frac{16}{19}\)

16 tháng 12 2017

\(1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)

đặt \(A=1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)

\(A=1-\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)

đặt \(B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{53.55}+\frac{1}{55.57}\)

\(2B=2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)

\(2B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{53.55}+\frac{2}{55.57}\)

\(2B=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{55-53}{53.55}+\frac{57-55}{55.57}\)

\(2B=\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+\frac{9}{7.9}-\frac{7}{7.9}+...+\frac{55}{53.55}-\frac{53}{53.55}+\frac{57}{55.57}-\frac{55}{55.57}\)

\(2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{55}+\frac{1}{55}-\frac{1}{57}\)

\(2B=\frac{1}{3}-\frac{1}{57}\)

\(2B=\frac{54}{171}\)

\(\Rightarrow B=\frac{54}{171}:2\)

\(\Rightarrow B=\frac{9}{57}\)

mà \(A=1-B\)

\(\Rightarrow A=1-\frac{9}{57}\)

\(\Rightarrow A=\frac{48}{57}\)

chúc bạn học giỏi ^^

21 tháng 9 2016

\(K=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}...\frac{-9999}{10000}=\left(-1\right)^{99}.\frac{1.3.2.4...99.101}{2.2.3.3.4.4...100.100}=-\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)