Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)
=> 4A = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)
=> 3A = \(1-\frac{1}{4^{2012}}\)
=> A = \(\frac{1-\frac{1}{4^{2012}}}{3}\)
Vậy A \(< \frac{1}{3}\)
\(\Leftrightarrow\left(\frac{3}{4}x-\frac{9}{16}\right)\left(\frac{1}{3}-\frac{3}{5}.\frac{1}{x}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{4}x-\frac{9}{16}=0\\\frac{1}{3}-\frac{3}{5}.\frac{1}{x}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{9}{5}\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{4};\frac{9}{5}\right\}\)
1 \(-\)\(\frac{1}{3.5}\)\(-\)\(\frac{1}{5.7}\)\(-\)\(\frac{1}{7.9}\)\(-\)..... \(-\)\(\frac{1}{53.55}\)\(-\)\(\frac{1}{55.57}\)
= 1 \(-\)( \(\frac{1}{3.5}\) + \(\frac{1}{5.7}\) + \(\frac{1}{7.9}\) + ..... + \(\frac{1}{53.55}\) + \(\frac{1}{55.57}\) )
= 1 \(-\)( \(\frac{1}{3}\)\(-\)\(\frac{1}{5}\)+ \(\frac{1}{5}\)\(-\)\(\frac{1}{7}\)+ \(\frac{1}{7}\)\(-\)\(\frac{1}{9}\)+....+ \(\frac{1}{53}\)\(-\)\(\frac{1}{55}\)+ \(\frac{1}{55}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)
= 1 \(-\)( \(\frac{1}{3}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)
= 1 \(-\) \(\frac{6}{19}\). \(\frac{1}{2}\)= 1 \(-\)\(\frac{3}{19}\)= \(\frac{16}{19}\)
\(1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)
đặt \(A=1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)
\(A=1-\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)
đặt \(B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{53.55}+\frac{1}{55.57}\)
\(2B=2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)
\(2B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{53.55}+\frac{2}{55.57}\)
\(2B=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{55-53}{53.55}+\frac{57-55}{55.57}\)
\(2B=\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+\frac{9}{7.9}-\frac{7}{7.9}+...+\frac{55}{53.55}-\frac{53}{53.55}+\frac{57}{55.57}-\frac{55}{55.57}\)
\(2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{55}+\frac{1}{55}-\frac{1}{57}\)
\(2B=\frac{1}{3}-\frac{1}{57}\)
\(2B=\frac{54}{171}\)
\(\Rightarrow B=\frac{54}{171}:2\)
\(\Rightarrow B=\frac{9}{57}\)
mà \(A=1-B\)
\(\Rightarrow A=1-\frac{9}{57}\)
\(\Rightarrow A=\frac{48}{57}\)
chúc bạn học giỏi ^^
\(K=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}...\frac{-9999}{10000}=\left(-1\right)^{99}.\frac{1.3.2.4...99.101}{2.2.3.3.4.4...100.100}=-\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
\(-3+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{3}}}}\)
\(=-3+\frac{1}{1+\frac{1}{3+\frac{3}{4}}}\)
\(=-3+\frac{1}{1+\frac{4}{15}}\)
\(=-3+\frac{15}{19}\)
\(=-\frac{42}{19}\)