Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
Giá trị (x) | Tần số (n) | Các tích (x.n) | |
17 | 3 | 51 | |
18 | 5 | 90 | |
19 | 4 | 76 | |
20 | 2 | 40 | |
21 | 3 | 63 | |
22 | 2 | 44 | |
24 | 3 | 72 | |
26 | 3 | 78 | |
28 | 1 | 28 | |
30 | 1 | 30 | |
31 | 2 | 62 | |
32 | 1 | 32 | = \(\dfrac{666}{30}=22,2\) |
N = 30 | Tổng: 666 |
Phép tính | Ước lương kết quả | ĐS đúng |
24.68:12 | 20.70:10 = 140 | 136 |
7,8.3,1:1,6 | 8.3:2=12 | 15,1125 |
6,9.72:24 | 7.70:20 = 24,5 | 20,7 |
56.9,9:8,8 | 60.10:9 = 66,(6) | 63 |
0,38.0,45:0,95 | 0.0:1=0 | 0,18 |
vì AC=AD=>A thuộc đường trung trực của CD
CB=BD=>B thuộc đường trung trực của CD
=>AB thuộc đường trung trực của CD=>AB vuông góc với CD
a) Xét tam giác ABI và tam giác AMI:
AI chung.
AB = AM (gt).
\(\widehat{BAI}=\widehat{MAI}\) (AI là phân giác \(\widehat{BAC}\)).
\(\Rightarrow\Delta ABI=\Delta AMI\left(c-g-c\right).\)
\(\Rightarrow\) IB = IM (2 cạnh tương ứng).
b) Xét tam giác BAM: AB = AM (gt).
\(\Rightarrow\Delta BAM\) cân tại A.
Mà AI là phân giác \(\widehat{BAM}\) (AI là phân giác \(\widehat{BAC}\), \(M\in AC\)).
\(\Rightarrow\) AI là đường trung trực của BM (T/c tam giác cân).
c) Ta có: AI là đường trung trực của BM (cmt).
\(\Rightarrow\) IB = IM (T/c đường trung trực).
Ta có: \(\widehat{ABI}+\widehat{IBH}=180^o.\\\widehat{AMI} +\widehat{IMC}=180^o.\)
Mà \(\widehat{ABI}=\widehat{AMI}\left(\Delta ABI=\Delta AMI\right).\)
\(\Rightarrow\widehat{IBH}=\widehat{IMC}.\)
Xét tam giác BIH và tam giác MIC:
IB = IM(cmt).
\(\widehat{BIH}=\widehat{MIC}\) (đối đỉnh).
\(\widehat{IBH}=\widehat{IMC}\left(cmt\right).\)
\(\Rightarrow\Delta BIH=\Delta MIC\left(g-c-g\right).\)
\(\Rightarrow\) IH = IC (2 cạnh tương ứng).
d) Ta có: \(AH=AB+BH.\\ AC=AM+MC.\)Mà \(AB=AM\left(cmt\right).\\ BH=MC\left(\Delta BIH=\Delta MIC\right).\)
\(\Rightarrow\) AH = AC.\(\Rightarrow\Delta AHC\) cân tại A.
Mà AI là phân giác \(\widehat{BAC}\left(gt\right).\)
\(\Rightarrow\) AI là đường trung trực của HC (T/c tam giác cân).
e) Ta có:AI vuông góc BM (AI là đường trung trực của BM).
AI vuông góc HC (AI là đường trung trực của HC).
\(\Rightarrow\) BM // HC.