K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Lời giải:

Để hiểu công thức trên một cách đơn giản nhất thì bạn chỉ cần vẽ sơ đồ Ven ra, xác định các tập trên sẽ thấy ngay công thức trên đúng.

Nếu muốn chứng minh công thức trên theo cách minh bạch hơn thì như sau:

Trước tiên ta cm kết quả:

\(|A\cup B|=|A|+|B|-|A\cap B|\)

Thật vậy:

Đặt \(\left\{\begin{matrix} A=\left\{a_1,a_2,...,a_n, c_1,c_2,...,c_p\right\}\\ B=\left\{b_1,b_2,....,b_m,c_1,c_2,...,c_p\right\} \end{matrix}\right.\) với

\(\Rightarrow A\cup B=\left\{a_1,a_2,...,a_n, c_1,c_2,...,c_p, b_1,b_2,...,b_m\right\}\)

\(A\cap B=\left\{c_1,c_2,...,c_p\right\}\)

Ta có:

\(\Rightarrow |A|=n+p; |B|=|m+p|\); \(|A\cap B|=p; |A\cup B|=n+m+p\)

Do đó: \(|A\cup B|=|A|+|B|-|A\cap B|\)

--------------------

Áp dụng công thức trên:

\(|A\cup B\cup C|=|(A\cup B)\cup C|=|A\cup B|+|C|-|(A\cup B)\cap C|\)

\(=|A|+|B|-|A\cap B|+|C|-|(A\cap C)\cup (B\cap C)|\)

\(=|A|+|B|-|A\cap B|+|C|-(|A\cap C|+|B\cap C|)-|(A\cap C)\cap (B\cap C)|\)

\(=|A|+|B|-|A\cap B|+|C|-|A\cap C|-|B\cap C|+|A\cap B\cap C|\)

Như vậy đó.

NV
14 tháng 4 2022

\(\lim\limits_{x\rightarrow x_0}f\left(x\right)=+\infty\)

5 tháng 11 2023

ối giời ơi cái j vậy

7 tháng 11 2023

Khó thế em mới học lớp 5

NV
26 tháng 8 2021

\(VT=\sqrt{\left(2+2a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)

\(VT=\sqrt{\left[a^2-2a+1+a^2+2a+1\right]\left[b^2+2bc+c^2+b^2c^2-2bc+1\right]}\)

\(VT=\sqrt{\left[\left(1-a\right)^2+\left(a+1\right)^2\right]\left[\left(bc-1\right)^2+\left(b+c\right)^2\right]}\)

Bunhiacopxki:

\(VT\ge\left(1-a\right)\left(bc-1\right)+\left(a+1\right)\left(b+c\right)=\left(1+a\right)\left(1+b\right)\left(1+c\right)-2\left(1+abc\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)

Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\\AI \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAI} \right)\\\left. \begin{array}{l} \Rightarrow BC \bot AH\\AH \bot SI\end{array} \right\} \Rightarrow AH \bot \left( {SBC} \right)\end{array}\)

Vậy \(d\left( {A,\left( {SBC} \right)} \right) = AH\).