Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC
\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)
Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều
\(\Rightarrow ED=R\)
\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)
\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\)
Áp dụng định lý talet:
\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)
\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)
\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)
Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)
\(\Rightarrow\Delta ABC\) đều
a, \(\hept{\begin{cases}x^2+y^2+3xy=5\\\left(x+y\right)\left(x+y+1\right)+xy=7\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+xy=5\\\left(x+y\right)\left(x+y+1\right)+xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-\left(x+y\right)\left(x+y+1\right)=-2\\\left(x+y\right)^2+xy=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)\left(x+y-x-y-1\right)=-2\\\left(x+y\right)^2+xy=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=2\\4+xy=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2-y\\4+\left(2-y\right)y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\2y-y^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\-\left(y^2-2y+1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2-y\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy hpt có nghiệm (x;y) = (1;1)
Bài 2 :
a ) \(\sqrt{4x-8}+\sqrt{x-2}=4+\dfrac{1}{3}\sqrt{9x-18}\) ( ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow2\sqrt{x-2}+\sqrt{x-2}=4+\dfrac{1}{3}.3\sqrt{x-2}\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=4\)
\(\Leftrightarrow2\sqrt{x-2}=4\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\)
\(\Leftrightarrow x=2\) ( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm x = 2 .
Bài 2 :
b ) \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=0\)
\(\Leftrightarrow|x-3|-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{3}=0\left(x\ge3\right)\\3-x-\sqrt{3}=0\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{matrix}\right.\)
Vậy phương trình cón nghiệm \(x=3+\sqrt{3}\) hoặc \(x=3-\sqrt{3}\) .
1. a) Ta có :A=99...9000...0+25(n chữ số 9,n +2 chữ số 0)
Đặt a=11...1(n chữ số 1 ) suy ra : 10n=9a+1.Khi đó :
A=9a.(9a+1).100+25=8100a2+900a+25=(90a+5)2=99...952
2.a)
Ta có :A=11...1\(\times\)10n+11...1-22...2(n chữ số 1 ,n chữ số 2)
Đặt a=11...1 (n chữ số 1) suy ra 10n=9a+1,22...2=2a.Khi đó :
A=(a(9a+1)+a)-2a=9a2=(3a)2=33...32(n chữ số 3)
b)Tương tự :B=a(9a+1)+a+4a+1=9a2+6a+1=(3a+1)2=33..342(n -1 chữ số 3)
\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)
Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).
Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).
Do đó ta có đpcm.
`a)A` có nghĩa `<=>x-1 >= 0 <=>x >= 1`
`b)B=\sqrt{3^2 .2}+\sqrt{2^3}-\sqrt{5^2 .2}`
`<=>B=3\sqrt{2}+2\sqrt{2}-5\sqrt{2}`
`<=>B=0`
`c)` Với `a >= 0,a \ne 1` có:
`C=[a-1]/[\sqrt{a}-1]-[a\sqrt{a}-1]/[a-1]`
`C=[(a-1)(\sqrt{a}+1)-a\sqrt{a}+1]/[(\sqrt{a}-1)(\sqrt{a}+1)]`
`C=[a\sqrt{a}+a-\sqrt{a}-1-a\sqrt{a}+1]/[(\sqrt{a}-1)(\sqrt{a}+1)]`
`C=a/[a-1]`