K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

sai đề nha bạn

câu a, mk sửa thành CM: tam giác ABM=ECM nha

còn ko đúng thì thôi

4 tháng 4 2016

a) xét tan giác ABM và tam giác ECM có:

MC=MB(gt)

MA=ME(gt)

AMB=EMC( 2 góc đđ)

suy ra tam giác ABM=ACM(c.g.c)

b) theo câu a, ta có tam giác ABM=ACM(c.g.c)

suy ra BAM=MCE suy ra AB//CE( 2 góc slt)

19 tháng 12 2020

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại D có 

BH chung

AH=DH(gt)

Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)

b) Xét ΔAMB và ΔEMC có

AM=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

\(\widehat{BAM}=\widehat{CEM}\)(hai góc tương ứng)

mà \(\widehat{BAM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong

nên AB//CE(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: ΔABH=ΔDBH(cmt)

nên AB=BD(hai cạnh tương ứng)(1)

Ta có: ΔABM=ΔECM(cmt)

nên AB=CE(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra BD=CE(đpcm)

16 tháng 4 2017

a) xét tam giác ABM và ECM có:

       BM=MC (trung tuyến AM)

      góc AMB= CME ( đối đỉnh)

      MA = ME(gt)

=> tam giác ABM = ECM (cgc)

b) Vì tam giác ABM = ECM 

=> góc BAM = CEM

mà 2 góc ở vị trí SLT

=> AB//CE

c)xét tam giác ACE có: góc CEA đối diện cạnh AC

                                   góc CAE đố diện cạnh CE

                     mà AC > CE

                     => góc CEA > CAE    mà góc CEA = BAM

                     => góc BAM > CAE hay góc BAM > CAM

d) tam giác MCH vuông tại H

=> MC > MH mà MC  = BM

=> BM > MH

16 tháng 4 2017

sai đề rồi kìa!!!

16 tháng 4 2017

A B C M // // E . _ _ 1 2 1 2 H

Xét \(\Delta ABM\)\(\Delta ECM\)có:\(BM=CM\)(M là trung điểm của BC)

                                                       \(\widehat{M_1}=\widehat{M_2}\)(Đối đỉnh)

                                                      \(AM=EM\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta ECM\left(c-g-c\right)\)

b) Vì \(\Rightarrow\Delta ABM=\Delta ECM\left(cmt\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{E}\)(2 cạnh tương ứng)

Mà  2 góc này nằm ở vị trí SLT

\(\Rightarrow\)AB // CE

c)Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)

\(\Rightarrow AB=EC\)(2 CẠNH TƯƠNG ỨNG)

Xét \(\Delta ABC\)vuông tại B 

\(\Rightarrow AC>AB\)

\(AB=EC\)

\(\Rightarrow AC>EC\)

Xét \(\Delta ACE\)có AC > EC

\(\Rightarrow\widehat{E}>\widehat{A_2}\)(Quan hệ giữa góc và cạnh của 1 tam giác)

Mà \(\widehat{E}=\widehat{A_1}\left(cmt\right)\)

\(\Rightarrow\widehat{A_1}>\widehat{A_2}\)

d) Xét \(\Delta MCH\)vuông tại H 

\(\Rightarrow MC>MH\)

MÀ MC = BM (M là trung điểm của BC)

\(\Rightarrow BM>MH\)

                                                    

a) Xét ΔAMB và ΔDMC có

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)

26 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

26 tháng 12 2021

1 câu thôi hả bạn?

 

26 tháng 12 2021

\(a,\left\{{}\begin{matrix}MB=MC\\AB=AC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}AM=ME\\BM=MB\\\widehat{AMB}=\widehat{EMC}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BME}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}EC\\ c,\Delta AMB=\Delta AMC\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\widehat{AMC}\\ \text{Mà }\widehat{AMC}+\widehat{AMB}=180^0\\ \Rightarrow\widehat{AMC}=\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)

a: Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC
MB=MC

=>ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//DC

=>DC vuông góc AC

b: Xét ΔKAB vuông tại A và ΔKCD vuông tại C có

KA=KC

AB=CD

=>ΔKAB=ΔKCD

=>KB=KD

=>ΔKBD cân tại K

25 tháng 4 2021

phải đúng là công chúa đẹp bét hệ mặt trời

cậu không giải bài giúp tôi thì cũng đừng cmt như thế

24 tháng 12 2015

a) Xét hai tam giác ABM và MCE có:

+ MA = ME

+ góc AMB = góc CME ( 2 góc đối đỉnh )

+ vì M là trung điểm của BC => MB = MC

Vậy tam giác ABM = tam giác MCE ( c - g - c )

b) Vì tam giác ABM = tam giác MCE nên góc ABM = góc MCE ( 2 góc tương ứng)

Mà hai góc này bằng nhau ở vị trí so le trong nên AB // EC (đpcm)

24 tháng 12 2015

xét tam giác ABC VÀ tam giác EMC có:

MB=MC(gt)

MA=ME(gt)

AM chung

Do đó tam giác ABC= tam giác EMC(c-c-c)