Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề văn nha đề thi khảo sát học kì 2 năm nay của trường mình luôn nha
Từ biểu đồ trên: Tổng số học sinh giỏi (Toán và Văn; Văn và Anh; Anh và Toán) - 3 lần số hs giỏi cả 3 môn ( Toán; Văn; Anh) = Số học sinh chỉ giỏi 2 trong 3 môn
=> Số học sinh giỏi cả 3 môn là: (8 + 5 + 7 - 11) : 3 = 3 học sinh
Từ đo, ta tìm được số hs chỉ giỏi 2 trong 3 môn ( xem hình)
b) Số học sinh chỉ giỏi Toán là: 15 - (4 + 3+ 5) = 3 HS
Số hs chỉ giỏi Văn là : 14 - (5 + 3 + 2)= 4 HS
Số hs chỉ giỏi tiếng Anh là: 12 - ( 4 + 3 + 2) = 3 HS
Cho mình cái biểu thức tổng số học sinh giỏi (Toán và Văn; Văn và Anh; Anh và Toán) - 3 lần số hs giỏi 2 môn = số hs chỉ giỏi 2 trong 3 môn với ạ
Tùy em nhá, có thể là em sẽ chỉ đc loại khá thôi em ạ, giỏi thì phải tất cả trên 9 cơ em ạ.
Gọi A,B,C là tập hợp các học sinh tích môn toán , Văn , Anh
ta có :
\(\hept{\begin{cases}\left|A\right|=10,\left|B\right|=20,\left|C\right|=25\\\left|A\cap B\cap C\right|=3\\\left|A\cup B\cup C\right|=40\end{cases}}\) ta có : \(\left|A\cup B\cup C\right|=\left|A\right|+\left|B\right|+\left|C\right|-\left(\left|A\cap B\right|+\left|B\cap C\right|+\left|C\cap A\right|\right)+\left|A\cap B\cap C\right|\)
nên \(\left|A\cap B\right|+\left|B\cap C\right|+\left|C\cap A\right|=18\)
Do đó số học sinh chỉ thích đúng hai môn là :
\(\left|A\cap B\right|+\left|B\cap C\right|+\left|C\cap A\right|-3\left|A\cap B\cap C\right|=18-3\times3=9\)
a: Số cách chọn là \(C^3_{18}=816\left(cách\right)\)
b: SỐ cách chọn là 7*6*5=210 cách
c: SỐ cách chọn là 7*5+5*6+7*6=107 cách
Số HS chỉ khá tự nhiên:
25-10=15(học sinh)
Số HS chỉ khá xã hội:
24 -10=14(học sinh)
Số HS chỉ khá 1 nhóm môn:
15+14=29(học sinh)
Đ.số: 29 học sinh