Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1)
*Nếu a là số nguyên dương Ta giả sử (1) đúng với a=n. Ta có
Ta sẽ chứng minh (1) đúng với a=n+1. Thật vậy:
Đặt
vì p là số nguyên tố nên là số nguyên và cũng là số nguyên nên:
là số nguyên chia hết cho p.
Vậy ta có(với m thuộc Z nào đó)
(dễ dàng thấy nó chia hết cho p)
*Nếu a là số nguyên âm.
+ p=2 => đúng
+p lẻ thì đặt (với b là số nguyên dương, )
Vậy với mọi
Bài viết đã được chỉnh sửa nội dung bởi Namthemaster1234: 08-07-2014 - 08:48
chỉ có mấy cái công thức tính S, chu vi, cạnh, góc của tam giác theo sin, cos thôi bạn
Đây nè:
https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-de-thi-tuyen-sinh-lop-10-mon-toan-nam-2019-cua-ha-noi-538099.html
Mik chưa học đến lớp 9 nên ko có , sorry bn nha :)))
~ Hok tốt ~
#JH
1, Tìm các số nguyên tố p, q thỏa mãn (7p−5p)(7q−5q) chia hết cho pq.
2, Tìm các số nguyên tố p, q thỏa mãn 2p+2q chia hết cho pq.
3, Tìm số nguyên dương n thỏa mãn: Với mọi cặp số nguyên a, b thỏa mãn a2b+1 chia hết cho n ta luôn có a2+b chia hết cho n
4, Cho số nguyên tố lẻ p và các số nguyên dương a, b, n thỏa mãn (a, p)=1 và ap≡bp(mod pn+1) Chứng minh rằng:a≡b(mod pn)
trên mạng không có à???????????????????