Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x,y,z biết:
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
Đây giải đi
Bài 1:
Ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{99}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}\)
Vì \(A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\) nên \(A< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.....\frac{a_9}{a_{10}}=\frac{a_{10}}{a_1}=\frac{a_1+a_2+....+a_{9+}a_{10}}{a_2+a_3+.....+a_{10}+a_1}=1\)
\(=>a_1=a_2;a_2=a_3;.......a_{10}=a_1=>a_1=a_2=a_3=....=a_{10}\)
Vậy ta có đpcm
Theo de bai ta co :
Dat : \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x.y=2k.3k\)
\(30=6k^2\)
\(30:6=k^2\)
\(5=k^2\)
de co van de ko
\(Ta\)\(có\): 3X=2Y 7Y=6Z
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{6}=\frac{z}{7}\)
\(+\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{1}{6}.\frac{x}{2}=\frac{1}{6}.\frac{y}{3}\Rightarrow\frac{x}{12}=\frac{y}{18}\)(1)
\(+\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{1}{3}.\frac{y}{6}=\frac{1}{3}.\frac{z}{7}\Rightarrow\frac{y}{18}=\frac{z}{21}\)(2)
Từ (1),(2)=>\(\frac{x}{12}=\frac{y}{18}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{18}=\frac{z}{21}=\frac{x+3y-2z}{12+3.18-2.21}=\frac{12}{12}=1\)
=>x=12.1=12
y=18.1=18
z=21.1=21
Vậy x=12;y=18;z=21
hộ mk cái
thank you
chúc các bạn mik hok tốt