Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Tham khảo:
https://hoc24.vn/hoi-dap/tim-kiem?id=45441263315&q=T%C3%ACm%20nghi%E1%BB%87m%20nguy%C3%AAn%20c%E1%BB%A7a%20ph%C6%B0%C6%A1ng%20tr%C3%ACnh%20sau%C2%A0%5C%28x%5E6%203x%5E2%201%3Dy%5E4%5C%29
Ta có \(x^6< x^6+3x^2+1< x^6+6x^4+12x^2+8=\left(x^2+2\right)^3\).
Theo nguyên lí kẹp ta có \(x^6+3x^2+1=\left(x^2+1\right)^3\Leftrightarrow x^4=0\Leftrightarrow x=0\).
Khi đó y = 1.
Vậy...
Ta có:
\(x^6+3x^2+1=y^4\)
\(\Leftrightarrow4x^6+12x^3+4=4y^4\)
\(\Leftrightarrow4x^6+12x^3+9=4y^4+5\)
\(\Leftrightarrow\left(2x^3+3\right)^2-4y^4=5\)
\(\Leftrightarrow\left(2x^3+2y^2+3\right)\left(2x^3-2y^2+3\right)=5\)
\(\Rightarrow\orbr{\begin{cases}2x^3+2y^2+3=5\\2x^3-2y^2+3=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=0;y=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x^3+2y^2+3=-1\\2x^3-2y^2+3=-5\end{cases}\Leftrightarrow x=\sqrt[3]{-6}}\) (loại)
Vậy PT có nghiệm \(\left(x;y\right)=\left(0;1\right);\left(0;-1\right)\)
Có x6+3x2+1=y3>x6x6+3x2+1=y3>x6 (1)(1)
x6+3x2+1=y3\leqx6+3x4+3x2+1=(x2+1)3(2)x6+3x2+1=y3\leqx6+3x4+3x2+1=(x2+1)3(2)
(1);(2)(1);(2) suy ra x6+3x2+1=(x2+1)3x6+3x2+1=(x2+1)3 suy ra x=0;y=1
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
+, Nếu x = 0 => ko tồn tại y thuộc Z
+, Nếu x khác 0 => x^2 >= 1 => x^2-1 >= 0
Có : y^3 = x^3+2x^2+3x+2 > x^3 ( vì 2x^2+3x+2 > 0 )
Lại có : y^3 = (x^3+3x^3+3x+1)-(x^2-1) = (x+1)^3 - (x^2-1) < = (x+1)^3
=> x^3 < y^3 < = (x+1)^3
=> y^3 = (x+1)^3
=> x^2-1 = 0
=> x=-1 hoặc x=1
+, Với x=-1 thì y = 0
+, Với x=1 thì y = 2
Vậy .............
Tk mk nha
Ta có: \(x^3+2x^2+3x+2=y^3\) (1)
Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{2}x\right)+2=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+2-2.\frac{9}{16}\)
\(=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\) Vì \(\left(x+\frac{3}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)
\(\Rightarrow y^3>x^3\Rightarrow y^3\ge\left(x+1\right)^3\)
\(\Rightarrow x^3+2x^2+3x+2\ge\left(x+1\right)^3\) \(\Rightarrow x^3+2x^2+3x+2\ge x^3+3x^2+3x+1\)
\(\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-3x-2\le0\)
\(\Rightarrow x^2-1\le0\Rightarrow x^2\le1\) Vì \(x\in Z\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)
+ TH1: x2 = 0 => x =0 Thay vào pt (1) ta được y3 = 2 (loại) vì y nguyên
+ TH2 : x2 = 1 => \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Thay x=1 vào pt (1) ta đc: 1+2+3+2 = 8 = y3 => y = 2
Thay x= -1 vào pt (1) ta đc: -1 + 2 -3 +2 = 0 =y3 => y = 0
Vậy cặp (x;y) là (1;2) ; (-1;0).
a/ \(x^3-3x^2+3x-2=0\)
\(\Leftrightarrow x^3-2x^2-x^2+2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2-x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy x = 2 là nghiệm của phương trình.
b/ \(\left(x+y\right)^2=\left(x-1\right)\left(y+1\right)\)
\(\Leftrightarrow2\left(x+y\right)^2=2\left(x-1\right)\left(y+1\right)\)
\(\Leftrightarrow2x^2+4xy+2y^2=2xy+2x-2y-2\)
\(\Leftrightarrow2x^2+2y^2+2xy-2x+2y+2=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(x+y\right)^2=0\)
Mà \(\left(x-1\right)^2\ge0\)
\(\left(y+1\right)^2\ge0\)
\(\left(x+y\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
Vậy \(x=1;y=-1\Leftrightarrow\left(x+y\right)^2=\left(x-1\right)\left(y+1\right)\)