\(A=\frac{\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}}{\frac{100}{1}+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

     \(\frac{49}{1}+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)

\(=1+1+...+1+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)(có 49 số 1)

\(=\left(1+\frac{48}{2}\right)+\left(1+\frac{47}{3}\right)+...+\left(1+\frac{2}{48}\right)+\left(1+\frac{1}{49}\right)+1\)

\(=\frac{50}{2}+\frac{50}{3}+...+\frac{50}{48}+\frac{50}{49}+\frac{50}{50}\)

\(=50\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)\)

Chúc bạn học tốt.

29 tháng 8 2017

A=\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

A=\(1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

BC chịu thua

14 tháng 5 2018

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{50}}\)

      \(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

       \(2A-A=1-\frac{1}{2^{50}}\)

     \(A=1-\frac{1}{2^{50}}< 1\)

       \(\Rightarrow A< 1\)

4 tháng 8 2018

ta có 1/2^2<1/2

        1/2^3<1/2

.............

      1/2^50<1/2

\(\Rightarrow\)1/2*50>1/2^1+1/2^2+1/2^3+...........+1/2^50

\(\Rightarrow\)

4 tháng 8 2018

Tìm 2A 

Rồi lấy 2A - A là ra

Ok

\(A=\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}\)

\(\Rightarrow A< 1\)