Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{\sqrt{1+a^3+b^3}}{ab}\ge\frac{\sqrt{3ab}}{ab}\ge\frac{\sqrt{3}}{\sqrt{ab}}\)
Tương tự
\(\frac{\sqrt{1+b^3+c^3}}{bc}\ge\frac{\sqrt{3}}{\sqrt{bc}}\)
\(\frac{\sqrt{1+a^3+c^3}}{ac}\ge\frac{\sqrt{3}}{\sqrt{ac}}\)
Từ đó
\(P\ge\sqrt{3}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\right)\ge\sqrt{3}\frac{3}{\sqrt[3]{abc}}=3\sqrt{3}\)
Đạt được khi a = b = 1
A= \(\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
đkxđ: a>0 và a khác 1
A= \(\left[\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a+1}\right)}\right]:\frac{a+2}{a-2}\)
=\(\left(\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}\right).\frac{a-2}{a+2}\)
=\(\frac{2.\left(a-2\right)}{a+2}\)
A= \(2-\frac{8}{a+2}\)
muôn A nhỏ nhất thì a+2 nhỏ nhất mà a>0 và a khác 1
=> a=2
=> GTNN A=0 khi a=2
a) ĐKXĐ \(\Leftrightarrow\)\(\begin{cases}\sqrt{a}\ge0\\\sqrt{a}-1\ne0\\\sqrt{a}\ne0\\a-2\ne0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}a\ge0\\a\ne0\\a\ne1\\a\ne2\end{cases}\)\(\Leftrightarrow\begin{cases}a>0\\a\ne1\\a\ne2\end{cases}\)
b)\(A=\left[\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right].\frac{a-2}{a+2}\)
\(=\left(\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right).\frac{a-2}{a+2}=\frac{2\sqrt{a}}{\sqrt{a}}\cdot\frac{a-2}{a+2}=\frac{2a-4}{a+2}\)
c)\(A=\frac{2a-4}{a+2}=\frac{2\left(a+2\right)-8}{a+2}=2-\frac{8}{a+2}\)
A đạt GTNN khi và chỉ khi \(\frac{8}{a+2}\) đạt GTLN khi và chỉ khi a+2 đạt giá trị nhỏ nhất
Mà min a+2 là 2 khi a=0 suy ra Min A\(=2-\frac{8}{2}=-2\)
Vậy Min A là -2 khi a=0