K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

1)

a)

\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)

\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)

\(\frac{-20}{5}< x< \frac{-3}{10}\)

\(\frac{-40}{10}< x< \frac{-3}{10}\)

\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)

2 tháng 4 2019

\(\left(\frac{-5}{3}\right)^3< x< \frac{-24}{35}.\frac{-5}{6}\)

\(\frac{25}{3}< x< \frac{-4}{7}.\frac{1}{1}\)

\(\frac{-25}{3}< x< \frac{-4}{7}\)

\(\frac{-175}{21}< x< \frac{-12}{21}\)

\(\Rightarrow Z\in\left\{-13;-14;-15;-16;...;-174\right\}\)

a: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{-\dfrac{1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)

\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}\)

\(=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)

b: \(A=158\left(\dfrac{12\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}{4\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}:\dfrac{5\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}{6\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}\right)\cdot\dfrac{50550505}{711711711}\)

\(=158\cdot\left(3\cdot\dfrac{6}{5}\right)\cdot\dfrac{50550505}{711711711}\)

\(\simeq40.39\)

4 tháng 2 2019

a) \(74\frac{19}{35}.\frac{7}{90}+15\frac{16}{35}.\frac{7}{90}+2\frac{14}{90}\)

\(\left(74\frac{19}{35}+15\frac{16}{35}\right).\frac{7}{90}+2\frac{14}{90}\)

=  90 . 7/90 + 194/90

= 630/90 + 194/90

= 824/90 = 412/45

b) (-2/5 + 3/7) - (4/9 + 12/20 - 13/35) + 7/35

= -2/5 + 3/7 - 4/9 -  3/5 + 13/35 + 7/35

= (-2/5 - 3/5) + 3/7 - 4/9 + (13/35 + 7/35)

= -1 + 3/7 - 4/9 + 4/7

= -1 + (3/7 + 4/7) - 4/9

= -1 + 1 - 4/9 = -4/9

31 tháng 8 2017

\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)

\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)

\(=\frac{1454}{323}+\frac{35}{43}+6\)

\(=5,...+6\)

\(=11,...\)

3 tháng 7 2018

\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)

\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)

\(=\sqrt{3}-2\) 

\(VayA=\sqrt{3}-2\)

1 tháng 9 2020

a) 

\(=\frac{7\cdot7\cdot8\cdot8\cdot9\cdot9\cdot10\cdot10\cdot11\cdot11}{6\cdot8\cdot7\cdot9\cdot8\cdot10\cdot9\cdot11\cdot10\cdot12}\)    

\(=\frac{7\cdot11}{6\cdot12}\)     

\(=\frac{77}{72}\)

b) 

\(=1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)  

\(=6+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)  

\(=6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)  

\(=6+\frac{1}{2}-\frac{1}{8}\)  

\(=6+\frac{3}{8}\)

\(=\frac{51}{8}\)

1 tháng 9 2020

Chia thành...a và b nhé.

Bg

a)Ta có: \(\frac{49}{48}.\frac{64}{63}.\frac{81}{80}.\frac{100}{99}.\frac{121}{120}\)

\(\frac{49.64.81.100.121}{48.63.80.99.120}\)

\(\frac{7.7.8.8.9.9.10.10.11.11}{6.8.7.9.8.10.9.11.10.12}\)

\(\frac{7.11}{6.12}\)    (chịt tiêu trên dưới)

\(\frac{77}{72}\)

b) Ta có: \(\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}\)

Có 6 số hạng  (đếm)

\(1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)

\(1+1+...+1+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)

\(1.6+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(6+\frac{1}{2}-\frac{1}{8}\)

\(\frac{13}{2}-\frac{1}{8}\)

\(\frac{51}{8}\)

Hơi dài....

15 tháng 3 2020

Sửa đề \(\frac{11}{13}\)chứ không phải \(\frac{11}{3}\)

\(\frac{2,75-2,2+\frac{11}{7}+\frac{11}{13}}{0,75-0,6+\frac{3}{7}+\frac{3}{13}}-x-\frac{1}{9}=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\)

+) Đặt \(A=\frac{2,75-2,2+\frac{11}{7}+\frac{11}{13}}{0,75-0,6+\frac{3}{7}+\frac{3}{13}}\)

\(A=\frac{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}\)

\(A=\frac{11\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)

\(A=\frac{11}{3}\)(1)

+) Đặt \(B=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\)

\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}\)

\(B=\frac{2}{2}\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}\right)\)

\(B=\frac{2}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\right)\)

\(B=\frac{2}{2}\left(1-\frac{1}{9}\right)=1\cdot\frac{8}{9}=\frac{8}{9}\)(2)

Từ (1) và (2) => \(A-x-\frac{1}{9}=B\)

=> \(\frac{11}{3}-x-\frac{1}{9}=\frac{8}{9}\)

=> \(\frac{11}{3}-x=1\)

=> \(x=\frac{11}{3}-1=\frac{8}{3}\)

Vậy x = 8/3